examples of non algebraic classes in the brown peterson
play

Examples of non- algebraic classes in the Brown-Peterson tower - PowerPoint PPT Presentation

Examples of non- algebraic classes in the Brown-Peterson tower Freie Universitt Berlin November 16, 2017 Gereon Quick NTNU Lefschetz s theorem: X projective complex surface Lefschetz s theorem: X projective complex surface 2-dim.


  1. 𝜍 Topological realization: Sm C Man X(C) X ”complex e.g. P 1 P 1 (C)=CP 1 ≃ S 2 manifold of solutions in C” motivic induced map spectrum 𝜍 E a,b (X) E a (X(C)) mot top β€œalgebraic” β€œtopological”

  2. 𝜍 Topological realization: Sm C Man X(C) X ”complex e.g. P 1 P 1 (C)=CP 1 ≃ S 2 manifold of solutions in C” motivic induced map spectrum 𝜍 E a,b (X) E a (X(C)) mot top β€œalgebraic” β€œtopological” Question: How to detect whether classes in E* (X(C)) are algebraic, i.e., top are in the image of 𝜍 ?

  3. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum

  4. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum E 2 * , *(X) mot 𝜐 H 2 * , *(X;Z) mot

  5. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum E 2 *(X) E 2 * , *(X) top mot 𝜐 𝜐 H 2 * , *(X;Z) H 2 *(X;Z) mot singular cohomology

  6. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum 𝜍 E E 2 *(X) E 2 * , *(X) top mot β†Ί 𝜐 𝜐 𝜍 H H 2 * , *(X;Z) H 2 *(X;Z) mot singular cohomology

  7. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum 𝜍 E E 2 *(X) E 2 * , *(X) top mot β†Ί 𝜐 𝜐 =cl H 𝜍 H H 2 * , *(X;Z) H 2 *(X;Z) mot singular cohomology

  8. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum 𝜍 E E 2 *(X) E 2 * , *(X) top mot β†Ί 𝜐 𝜐 =cl H 𝜍 H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H singular cohomology

  9. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum 𝜍 E Alg 2 *(X) βŠ† E 2 *(X) E 2 * , *(X) top mot E β†Ί 𝜐 𝜐 =cl H 𝜍 H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H singular cohomology

  10. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum 𝜍 E Alg 2 *(X) βŠ† E 2 *(X) E 2 * , *(X) top mot E must β†Ί 𝜐 𝜐 factor through =cl H 𝜍 H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H singular cohomology

  11. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum 𝜍 E Alg 2 *(X) βŠ† E 2 *(X) E 2 * , *(X) top mot E must β†Ί 𝜐 𝜐 factor through =cl H 𝜍 H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H singular cohomology Easier task:

  12. 𝜐 motivic Obstruction: Given E HZ. Eilenberg-MacLane Thom map spectrum 𝜍 E Alg 2 *(X) βŠ† E 2 *(X) E 2 * , *(X) top mot E must β†Ί 𝜐 𝜐 factor through =cl H 𝜍 H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H singular cohomology Easier task: describe using E 2 *(X(C))\Alg 2 *(X) H 2 *(X;Z)\Alg 2 *(X) top E H

  13. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 H =cl H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H

  14. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) 𝜍 H =cl H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H

  15. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) MGL 2 * , *(X) βŠ— L* Z MU 2 *(X) βŠ— L* Z 𝜍 H =cl H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H

  16. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) MGL 2 * , *(X) βŠ— L* Z MU 2 *(X) βŠ— L* Z Totaro ⟳ 𝜍 H =cl H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H

  17. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) MGL 2 * , *(X) βŠ— L* Z MU 2 *(X) βŠ— L* Z Levine + Totaro Levine-Morel β‰ˆ ⟳ 𝜍 H =cl H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H

  18. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) MGL 2 * , *(X) βŠ— L* Z MU 2 *(X) βŠ— L* Z Levine + ≉ in general Totaro Levine-Morel β‰ˆ ⟳ 𝜍 H =cl H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H

  19. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) MGL 2 * , *(X) βŠ— L* Z MU 2 *(X) βŠ— L* Z Levine + ≉ in general Totaro Levine-Morel β‰ˆ ⟳ 𝜍 H =cl H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H β€’ Atiyah-Hirzebruch: cl H is not surjective onto integral Hodge classes.

  20. Atiyah-Hirzebruch, Totaro, Levine-Morel: 𝜍 MGL MGL 2 * , *(X) MU 2 *(X) MGL 2 * , *(X) βŠ— L* Z MU 2 *(X) βŠ— L* Z Levine + ≉ in general Totaro Levine-Morel β‰ˆ ⟳ 𝜍 H =cl H H 2 * , *(X;Z) Alg 2 *(X) βŠ† H 2 *(X;Z) mot H β€’ Atiyah-Hirzebruch: cl H is not surjective onto integral Hodge classes. β€’ Totaro: new classes in kernel of cl H .

  21. A different perspective: Fix a prime p.

  22. A different perspective: Brown-Peterson, Fix a prime p. Quillen |v i |=2(p i -1) MU (p) splits as a wedge of suspensions of spectra BP with BP = Z (p) [v 1 ,v 2 ,…]. *

  23. A different perspective: Brown-Peterson, Fix a prime p. Quillen |v i |=2(p i -1) MU (p) splits as a wedge of suspensions of spectra BP with BP = Z (p) [v 1 ,v 2 ,…]. * quotient map BP BP/(v n+1 ,…) =: BP ⟨ n ⟩ For every n: with BP ⟨ n ⟩ = Z (p) [v 1 ,…,v n ] *

  24. A different perspective: Brown-Peterson, Fix a prime p. Quillen |v i |=2(p i -1) MU (p) splits as a wedge of suspensions of spectra BP with BP = Z (p) [v 1 ,v 2 ,…]. * quotient map BP BP/(v n+1 ,…) =: BP ⟨ n ⟩ For every n: with BP ⟨ n ⟩ = Z (p) [v 1 ,…,v n ] * The Brown-Peterson tower (Wilson): … … BP BP ⟨ n ⟩ BP ⟨ 1 ⟩ BP ⟨ 0 ⟩ BP ⟨ -1 ⟩ p=2: 2-local HZ (p) HF p connective K-theory

  25. Milnor operations:

  26. Milnor operations: For every n: stable cofibre sequence v n |v n | |v n |+1 βˆ‘ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ βˆ‘

  27. Milnor operations: For every n: stable cofibre sequence v n |v n | |v n |+1 βˆ‘ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ βˆ‘ with an induced exact sequence (for any space X) +|v n | BP ⟨ n ⟩ * (X) BP ⟨ n ⟩ *(X) q n BP ⟨ n ⟩ * +|v n |+1 (X) BP ⟨ n-1 ⟩ *(X)

  28. Milnor operations: For every n: stable cofibre sequence v n |v n | |v n |+1 βˆ‘ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ βˆ‘ with an induced exact sequence (for any space X) +|v n | BP ⟨ n ⟩ * (X) BP ⟨ n ⟩ *(X) q n BP ⟨ n ⟩ * +|v n |+1 (X) BP ⟨ n-1 ⟩ *(X) BP ⟨ n-1 ⟩ Thom map +|v n |+1 (X;F p ) HF p H*(X;F p ) H* Q n

  29. Milnor operations: For every n: stable cofibre sequence v n |v n | |v n |+1 βˆ‘ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ βˆ‘ with an induced exact sequence (for any space X) +|v n | BP ⟨ n ⟩ * (X) BP ⟨ n ⟩ *(X) q n BP ⟨ n ⟩ * +|v n |+1 (X) BP ⟨ n-1 ⟩ *(X) BP ⟨ n-1 ⟩ nth Milnor Thom operation: map Q 0 =Bockstein p n-1 p n-1 +|v n |+1 (X;F p ) Q n =P Q n-1 -Q n-1 P HF p H*(X;F p ) H* Q n

  30. The LMT obstruction in action: BP 2 *(X) ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Q n

  31. The LMT obstruction in action: BP 2 *(X) ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Q n 𝝱

  32. The LMT obstruction in action: BP 2 *(X) ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Q n 𝝱 Question: Is 𝝱 algebraic?

  33. The LMT obstruction in action: BP 2 *(X) ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

  34. The LMT obstruction in action: BP 2 *(X) LMT ⟲ q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

  35. The LMT obstruction in action: BP 2 *(X) LMT ⟲ 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

  36. The LMT obstruction in action: BP 2 *(X) LMT ⟲ 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

  37. The LMT obstruction in action: BP 2 *(X) LMT ⟲ q n 𝝱 n-1 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

  38. The LMT obstruction in action: BP 2 *(X) LMT if ⟲ = 0 q n 𝝱 n-1 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

  39. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ = 0 q n 𝝱 n-1 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n 𝝱 Question: Is 𝝱 algebraic?

  40. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ = 0 q n 𝝱 n-1 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n Q n 𝝱 𝝱 Question: Is 𝝱 algebraic?

  41. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ = 0 q n 𝝱 n-1 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n Q n 𝝱 𝝱

  42. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ = 0 q n 𝝱 n-1 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n Q n 𝝱 𝝱 Levine-Morel-Totaro obstruction:

  43. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ = 0 q n 𝝱 n-1 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n β‰  0 Q n 𝝱 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 β‰  0,

  44. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ q n 𝝱 n-1 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n β‰  0 Q n 𝝱 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 β‰  0,

  45. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ q n 𝝱 n-1 β‰  0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n β‰  0 Q n 𝝱 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 β‰  0,

  46. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ q n 𝝱 n-1 β‰  0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n β‰  0 Q n 𝝱 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 β‰  0,

  47. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ ✘ q n 𝝱 n-1 β‰  0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n β‰  0 Q n 𝝱 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 β‰  0,

  48. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ ✘ q n 𝝱 n-1 β‰  0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) β†Ί +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * Z*(X) Q n β‰  0 Q n 𝝱 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 β‰  0, then 𝝱 is not algebraic.

  49. Voevodsky’ s motivic Milnor operations:

  50. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra

  51. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra For a smooth complex variety X: mot Q n i+2p n -1,j+p n -1 (X;F p ) i,j H (X;F p ) H mot mot mod p-motivic cohomology

  52. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra For a smooth complex variety X: mot Q n i+2p n -1,j+p n -1 (X;F p ) i,j H (X;F p ) H mot mot mod p-motivic cohomology 2i,i Recall: = CH i (X;Z/p) H (X;F p ) and mot i,j H (X;F p ) = 0 if i>2j. mot

  53. Obstructions revisited: X smooth complex variety mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H mot mot β†Ί topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  54. Obstructions revisited: X smooth complex variety mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot β†Ί topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  55. Obstructions revisited: X smooth complex variety mot Q n mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot β†Ί topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  56. Obstructions revisited: X smooth complex variety mot Q n mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot β†Ί topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n 𝝱

  57. Obstructions revisited: X smooth complex variety mot Q n mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot β†Ί topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 β‰  0 𝝱 if

  58. Obstructions revisited: X smooth complex variety mot Q n mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot β†Ί ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 β‰  0 𝝱 if

  59. Obstructions revisited: X smooth complex variety mot Q n mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot β†Ί ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 β‰  0 𝝱 if Observation: The LMT-obstruction is particular to smooth varieties and bidegrees (2i,i).

  60. Obstructions revisited: X smooth complex variety mot Q n mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot β†Ί ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 β‰  0 𝝱 if Observation: The LMT-obstruction is particular to smooth varieties and bidegrees (2i,i). Example: Q n 𝛋 β‰  0 for 𝛋 the fundamental class of a suitable Eilenberg-MacLane space, though 𝛋 is algebraic.

  61. Back to our task:

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend