examples of non algebraic classes in the brown peterson
play

Examples of non- algebraic classes in the Brown-Peterson tower - PowerPoint PPT Presentation

Examples of non- algebraic classes in the Brown-Peterson tower Institut Mittag-Leffler April 20, 2017 Gereon Quick NTNU Algebraic classes: smooth complex schemes Let E be a motivic spectrum over Sm C . Algebraic classes: smooth complex


  1. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ q n 𝝱 n-1 = 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 𝝱 Question: Is 𝝱 algebraic?

  2. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ q n 𝝱 n-1 = 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 𝝱

  3. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ q n 𝝱 n-1 = 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 𝝱 Levine-Morel-Totaro obstruction:

  4. The LMT obstruction in action: BP 2 *(X) LMT then if ⟲ q n 𝝱 n-1 = 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  5. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ q n 𝝱 n-1 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  6. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ q n 𝝱 n-1 ≠ 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  7. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ q n 𝝱 n-1 ≠ 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  8. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ ✘ q n 𝝱 n-1 ≠ 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0,

  9. The LMT obstruction in action: BP 2 *(X) LMT then ⟲ ✘ ✘ q n 𝝱 n-1 ≠ 0 𝝱 n 𝝱 n-1 q n BP ⟨ n ⟩ 2 * +|v n |+1 (X) BP ⟨ n ⟩ 2 *(X) BP ⟨ n-1 ⟩ 2 *(X) ↺ +|v n |+1 (X;F p ) H 2 *(X;F p ) H 2 * CH*(X) Q n Q n 𝝱 ≠ 0 𝝱 if Levine-Morel-Totaro obstruction: If Q n 𝝱 ≠ 0, then 𝝱 is not algebraic.

  10. Voevodsky’ s motivic Milnor operations:

  11. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra

  12. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra For a smooth complex variety X: mot Q n i+2p n -1,j+p n -1 (X;F p ) i,j H (X;F p ) H mot mot mod p-motivic cohomology

  13. Voevodsky’ s motivic Milnor operations: There are motivic operations mod p-motivic Q n ∈ 𝓑 2p n -1,p n -1 mot Steenrod algebra For a smooth complex variety X: mot Q n i+2p n -1,j+p n -1 (X;F p ) i,j H (X;F p ) H mot mot mod p-motivic cohomology 2i,i Recall: = CH i (X;Z/p) H (X;F p ) and mot i,j H (X;F p ) = 0 if i>2j. mot

  14. Obstructions revisited: X smooth complex variety mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  15. Obstructions revisited: X smooth complex variety CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  16. Obstructions revisited: X smooth complex variety CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  17. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n

  18. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n 𝝱

  19. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 ≠ 0 𝝱 if

  20. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 ≠ 0 𝝱 if

  21. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 ≠ 0 𝝱 if Observation: The LMT-obstruction is particular to smooth varieties and bidegrees (2i,i).

  22. Obstructions revisited: X smooth complex variety mot Q n CH i (X;Z/p) ‖ mot Q n 2i,i 2i+2p n -1,i+p n -1 (X;F p ) H (X;F p ) H = 0 mot mot ↺ ✘ topological realization 2i+2p n -1 H 2i (X;F p ) H (X;F p ) Q n Q n 𝝱 ≠ 0 𝝱 if Observation: The LMT-obstruction is particular to smooth varieties and bidegrees (2i,i). Example: Q n 𝛋 ≠ 0 for 𝛋 the fundamental class of a suitable Eilenberg-MacLane space, though 𝛋 is algebraic.

  23. Back to our task:

  24. Back to our task: Study Alg 2 *(X) and its complement in E 2 *(X). E top

  25. Back to our task: Study Alg 2 *(X) and its complement in E 2 *(X). E top For example: E=BP ⟨ n ⟩ ?

  26. Back to our task: Study Alg 2 *(X) and its complement in E 2 *(X). E top For example: E=BP ⟨ n ⟩ ? Recall: BP and BP ⟨ n ⟩ exist in the motivic world (e.g. Vezzosi, Hopkins, Hu-Kriz, Ormsby, Hoyois, Ormsby-Østvær).

  27. Back to our task: Study Alg 2 *(X) and its complement in E 2 *(X). E top For example: E=BP ⟨ n ⟩ ? Recall: BP and BP ⟨ n ⟩ exist in the motivic world (e.g. Vezzosi, Hopkins, Hu-Kriz, Ormsby, Hoyois, Ormsby-Østvær). Question: How can we produce non-algebraic elements in BP ⟨ n ⟩ 2 *(X)? top drop the “top” from now on

  28. Back to the cofibre sequence:

  29. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑

  30. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ and the induced map q n BP ⟨ n ⟩ * +|v n |+1 (X). BP ⟨ n-1 ⟩ *(X)

  31. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ and the induced map q n BP ⟨ n ⟩ * +|v n |+1 (X). BP ⟨ n-1 ⟩ *(X) For example:

  32. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ and the induced map q n BP ⟨ n ⟩ * +|v n |+1 (X). BP ⟨ n-1 ⟩ *(X) For example: Bockstein homomorphism q 0 H* +1 (X;Z (p) ), n=0: H*(X;F p )

  33. Back to the cofibre sequence: Recall the stable cofibre sequence v n |v n | |v n |+1 ∑ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n ⟩ BP ⟨ n-1 ⟩ ∑ and the induced map q n BP ⟨ n ⟩ * +|v n |+1 (X). BP ⟨ n-1 ⟩ *(X) For example: Bockstein homomorphism q 0 H* +1 (X;Z (p) ), n=0: H*(X;F p ) q 1 +2p-1 (X), n=1: H*(X;Z (p) ) BP ⟨ 1 ⟩ * ⋮

  34. A big diagram: H k (X;F p )

  35. A big diagram: H k+1 (X;Z (p) ) q 0 H k (X;F p )

  36. A big diagram: BP ⟨ 1 ⟩ k+1+2p-1 (X) q 1 H k+1 (X;Z (p) ) q 0 H k (X;F p )

  37. A big diagram: +|v 0 |+…+|v n | BP ⟨ n ⟩ k (X) q n ⋮ q 2 BP ⟨ 1 ⟩ k+1+2p-1 (X) q 1 H k+1 (X;Z (p) ) q 0 H k (X;F p )

  38. A big diagram: q n+1 +|v 0 |+…+|v n | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | BP ⟨ n ⟩ k (X) (X) q n ⋮ q 2 BP ⟨ 1 ⟩ k+1+2p-1 (X) q 1 H k+1 (X;Z (p) ) q 0 H k (X;F p )

  39. A big diagram: q n+1 +|v 0 |+…+|v n | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | BP ⟨ n ⟩ k (X) (X) q n ⋮ BP ⟨ n+1 ⟩ q 2 Thom map BP ⟨ 1 ⟩ k+1+2p-1 (X) HF p q 1 H k+1 (X;Z (p) ) q 0 +|v 0 |+…+|v n+1 | H k (X;F p ) H k (X;F p )

  40. A big diagram: q n+1 +|v 0 |+…+|v n | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | BP ⟨ n ⟩ k (X) (X) q n ⋮ BP ⟨ n+1 ⟩ q 2 Thom map BP ⟨ 1 ⟩ k+1+2p-1 (X) HF p q 1 H k+1 (X;Z (p) ) q 0 +|v 0 |+…+|v n+1 | H k (X;F p ) H k (X;F p ) Q n+1 Q n …Q 0

  41. Lifting classes: We get

  42. Lifting classes: We get • a map 𝜒 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X)

  43. Lifting classes: We get • a map 𝜒 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱

  44. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 Q n+1 Q n …Q 0 +|v 0 |+…+|v n+1 | H k (X;F p )

  45. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X)

  46. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X)

  47. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X)

  48. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction ✘ 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X)

  49. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction ✘ 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X) • If Q n+1 ..Q 0 ( 𝝱 ) ≠ 0, then 𝜒 ( 𝝱 ) is not algebraic.

  50. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction ✘ 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 q n+1 Q n+1 Q n …Q 0 ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X) • If Q n+1 ..Q 0 ( 𝝱 ) ≠ 0, then 𝜒 ( 𝝱 ) is not algebraic. But we also pay a price…

  51. Lifting classes: We get • a map 𝜒 BP k +|v 0 |+…+|v n | (X) • an obstruction ✘ 𝜒 :=q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X) 𝜒 ( 𝝱 ) 𝝱 the degree q n+1 Q n+1 Q n …Q 0 increases ≠ 0 ≠ 0 +|v 0 |+…+|v n+1 | BP ⟨ n+1 ⟩ k +|v 0 |+…+|v n+1 | H k (X;F p ) (X) • If Q n+1 ..Q 0 ( 𝝱 ) ≠ 0, then 𝜒 ( 𝝱 ) is not algebraic. But we also pay a price…

  52. Wilson’ s unstable splitting: The price is as little as possible:

  53. Wilson’ s unstable splitting: The price is as little as possible: Theorem (Wilson): For any finite complex X, the map BP i (X) BP ⟨ n ⟩ i (X) is surjective if i ≤ 2(p n +…+p+1).

  54. Wilson’ s unstable splitting: The price is as little as possible: Theorem (Wilson): For any finite complex X, the map BP i (X) BP ⟨ n ⟩ i (X) is surjective if i ≤ 2(p n +…+p+1). Recall |v n |=2p n -1, hence |v 0 |+…+|v n |=2(p n +…+1)-n-1.

  55. Wilson’ s unstable splitting: The price is as little as possible: Theorem (Wilson): For any finite complex X, the map BP i (X) BP ⟨ n ⟩ i (X) is surjective if i ≤ 2(p n +…+p+1). Recall |v n |=2p n -1, hence |v 0 |+…+|v n |=2(p n +…+1)-n-1. BP k +|v 0 |+…+|v n | (X) 𝜒 =q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X)

  56. Wilson’ s unstable splitting: The price is as little as possible: Theorem (Wilson): For any finite complex X, the map BP i (X) BP ⟨ n ⟩ i (X) is surjective if i ≤ 2(p n +…+p+1). Recall |v n |=2p n -1, hence |v 0 |+…+|v n |=2(p n +…+1)-n-1. BP k +|v 0 |+…+|v n | (X) need to pick k ≥ n+3 ✘ 𝜒 =q n …q 0 BP ⟨ n ⟩ k +|v 0 |+…+|v n | H k (X;F p ) (X)

  57. Examples of non-algebraic classes:

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend