examining z decays to 3rd gen fermions b t
play

Examining Z decays to 3rd gen. fermions (b, t, ) Travis Martin - PowerPoint PPT Presentation

Examining Z decays to 3rd gen. fermions (b, t, ) Travis Martin with Stephen Godfrey, Ross Diener Carleton University, Ottawa August 30, 2011 @ SUSY2011 arXiv:1006.2845 Outline Discovery of a Z - Early and Late LHC


  1. Examining Z’ decays to 3rd gen. fermions (b, t,  ) Travis Martin with Stephen Godfrey, Ross Diener Carleton University, Ottawa August 30, 2011 @ SUSY2011 arXiv:1006.2845

  2. Outline ‣ Discovery of a Z’ - Early and Late LHC ‣ Identification of a Z’ ‣ tt and bb channel ‣ ττ channel ‣ Forward Backward Asymmetry ‣ Summary 2 /18

  3. Deviations from SM ‣ N( ν ) = 2.985 ± 0.008 1 ‣ A FBt (SM) = 5.0 ± 1.5% A FBt (Teva) = 19.3 ± 6.9% 2 ‣ A FBb (SM) = 10.33±0.07% A FBb (LEP) = 9.92±0.16% 3 ‣ Muon (g-2): (SM) 4511.07±0.74 (BNL E821) 4509.04±0.09 3 ‣ Extra neutral gauge boson, Z’, possible! ‣ Non-Universal Couplings? 1 See Erler and Langacker, PhysRevLett.84.212 2 See Cao, Heng and Yang, PhysRevD.81.014016 3 See Erler, et al, JHEP 0908:017 3 /18

  4. Current Limits ‣ FNAL, SLAC, CERN, L=1.08 fb -1 e + e - L=1.21 fb -1 µ + µ - JLab, LEP, Tevatron... e + e − µ + µ − + − Model Z SSM 1.70 (1.70) 1.61 (1.61) 1.83 (1.83) G 1.51 (1.50) 1.45 (1.44) 1.63 (1.63) Z M Z [GeV] EW (this work) CDF DØ LEP 2 E 6 Z Models Z χ 1,141 892 640 673 Model/Coupling Z ψ Z N Z η Z I Z S Z χ Z ψ 147 878 650 481 Mass limit [TeV] 1.49 1.52 1.54 1.56 1.60 1.64 427 982 680 434 Z η 1,204 789 575 Z I ATLAS Collaboration, CERN-PH-EP-2011-123 Z S 1,257 821 Z N 623 861 Z R 442 Theory Estimate ( µµ only): Z LR 998 630 804 Z L (803) (740) 1605 GeV SSM Z SM 1,403 1,030 780 1,787 Z string 1,362 1517 GeV E6 χ Erler, et al, JHEP 0908:017 E6 ψ 1385 GeV E6 η 1429 GeV 4 /18

  5. A Plethora of Models ‣ Non-exhaustive list: ‣ GUT Motivated - E6 χ , η , ψ (couplings ~ θ E6 ) ‣ Left Right Symmetric (couplings ~ g R /g L ) ‣ 3-3-1 Model ‣ Little Higgs (variants) ‣ Topcolor & Technicolor (couplings ~ θ TC2 , θ ETC ) ‣ Un-unified Model (couplings ~ θ UUM ) ‣ Topcolor, Technicolor, Un-unified models - non-universal couplings 5 /18

  6. LHC Discovery Potential http://lpc.web.cern.ch/lpc/lumiplots.htm Discovery Reach (GeV) 3 4 10 10 χ E6 ψ E6 1.96 TeV - 8.0 fb -1 E6 η LRSM Alt. LRSM UUM SSM 7 TeV - 1 fb -1 TC2 Littlest Higgs Simplest LH AFSLH 331 (2U1D) 7 TeV - 5 fb -1 ETC RS Graviton Sneutrino 7 TeV - 10 fb -1 14 TeV - 1 fb -1 14 TeV - 10 fb -1 14 TeV - 100 fb -1 Diener, Godfrey & Martin, arXiv:0910.1334 [hep-ph] 7 /18

  7. Identify with 3rd Gen Fermions ‣ Motivation: Uniquely identify non-universal models ‣ Benefits: ‣ Access coupling info, unavailable otherwise ‣ Useful for global fit ‣ Difficulties: ‣ ID is challenging, low statistics ‣ Large backgrounds ‣ Analysis assumes M Z’ ,  Z’ known from µ + µ - measurements ‣ Calculations done with MC w/ weighted events, at √ s = 14 TeV, L = 100 fb -1 7 /18

  8. Tagging - b-quark ‣ ε b ~60%, ε j <1% fake ATLAS Preliminary Light jet rejection ‣ Worse fake rate for higher p T 4 JetProb 10 SV0 IP3D SV1 3 10 IP3D+SV1 JetFitter Light jet rejection IP3D+JetFitter ATLAS Preliminary 2 10 1000 JetProb SV0 800 10 IP3D t t simulation, s =7 TeV SV1 jet jet p >20 GeV, | |<2.5 IP3D+SV1 � 600 T 1 JetFitter 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 IP3D+JetFitter b-jet efficiency 400 t t simulation, s =7 TeV jet | |<2.5, =60% � � b 200 The ATLAS Collaboration, ATLAS-CONF-2011-102 50 100 150 200 250 300 350 400 450 500 jet p T 8 /18

  9. Tagging - t-quark ‣ Traditional: tt ➝ bbjjl ν 0.6 0.06 0.5 0.05 ‣ High p T top ➝ fully hadronic Ε t ‣ fully hadronic BR: 46% 0.4 0.04 ‣ semi leptonic BR: 30% 0.3 0.03 0.2 0.02 Ε miss ‣ ε t ~40%, ε j ~1% 0.1 0.01 0 0 600 800 1000 1200 1400 1600 1800 ‣ New methods? p T GeV 10 5 10 4 10 3 d Σ dM fb 100 GeV 10 2 10 1 10 1 dijet 10 2 tt dijet after toptag Current Dilepton & Semi-Leptonic: 10 3 tt after toptag 10 4 ε tt = 1-2% (low p T ) 1000 1500 2000 2500 3000 3500 4000 dijet tt invariant mass M GeV Kaplan, Rehermann, Schwartz and Tweedie, The ATLAS Collaboration, ATLAS-CONF-2011-100 Phys. Rev. Lett.101:142001 (2008) 9 /18

  10. A Signal in the Background ‣ p T >0.3M Z’ improves S/B 5 10 (fb/GeV) 4 10 (a) 3 10 ‣ Invariant mass window: � dM 10 2 d 10 ‣ |M-M Z’ |<2.5 Γ Z’ 1 10 -1 10 -2 -3 10 (fb/GeV) -4 10 1000 1400 1800 2200 2600 3000 M (GeV) 1 b b 1 (fb/GeV) � dM d -1 10 -1 10 � dM d 10 -2 -2 10 -3 10 1000 1200 1400 1600 1800 2000 M (GeV) -4 10 b b 1000 1400 1800 2200 2600 3000 10 /18 M (GeV) b b

  11. Detector Capabilities ‣ Currently ~7% resolution T )/p 2 2 2 2 Fit to MC: � (p )/p = N /p + S /p + C T T T T T 0.2 (p ‣ May achieve 5% res. � Anti-k R = 0.6 cluster jets T EM+JES calibration |y|<2.8 � -1 = 6 nb 0.1 L ‣ Measured Signal/Ideal: Dijet Balance: Monte Carlo (PYTHIA) Dijet Balance: Data 2010 s = 7 TeV Bisector: Monte Carlo (PYTHIA) ATLAS Preliminary Bisector: Data 2010 s = 7 TeV 0.04 20 30 40 50 60 70 80 90 100 , Data) LR LH UUM 20 MC 0 Rel Diff (Fit ideal 1.0 MC Dijet Balance Rel. Diff (Fit , Data) -20 MC Bisector Rel. Diff (Fit , Data) 3% 5% 7% 9% 20 30 40 50 60 70 80 90 100 p (GeV) � 0.9 T / meas https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/ 0.8 CONFNOTES/ATLAS-CONF-2010-054/ � 0.7 ‣ Assume no change to 0.6 0.5 invariant mass window 0.4 0.3 ‣ Still maintain event rate for 0.2 0.1 wider models 0.0 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 /M � Z' Z' 11 /18

  12. Ratio of events: R t/ µ vs R b/ µ ‣ R t/µ ~ K(R t2 +L t2 )/(R µ 2 +L µ 2 ) ε tt = 0.075, ε jj = 1/100 2 , σ t =5% ε bb = 0.36, ε jj = 1/100 2 , σ b =5% ε mm = 0.92, σ µ =3% ‣ R b/µ ~ K(R b2 +L b2 )/(R µ 2 +L µ 2 ) M Z’ = 1500 GeV (dark), 2500 GeV (light) 70 9 b/ � b/ � R R 8 60 LRM 7 ETC 50 6 40 5 SSM 4 AFSLH 30 UUM LH 3 SLH E6 - � 20 E6 - � 2 E6 - � LRM 10 3-3-1 1 TC2 Alt. LRM 0 0 0 1 2 3 4 5 6 7 0 10 20 30 40 50 60 70 R R t/ � t/ � 12 /18 Diener, Godfrey and Martin, Phys.Rev.D83:115008,2011

  13. Parameterized Couplings 2 g q 2 L 2 ) 2 g u g d g L 2 ) 2 ( ˆ ( ˆ ˆ ˆ γ q R 2 R 2 γ L = L = U = D = g q g q g L 2 ) 2 + ( ˆ g L 2 ) 2 + ( ˆ g R 2 ) 2 g R 2 ) 2 ˆ ˆ ( ˆ ( ˆ L 2 L 2 M. Cvetic and P. Langacker, Phys. Rev. D46, 4943 (1992) L − 1) × (1 − . 753 ˜ U − . 247 ˜ . 387(2 γ l D ) A F B 1+ . 684 ˜ U + . 316 ˜ D 1 . 796 1+ . 652 ˜ U + . 348 ˜ D r y 1 1+ . 736 ˜ U + . 264 ˜ ‣ R t/µ ~ K(R t2 +L t2 )/(R µ 2 +L µ 2 ) D . 726 1 − . 731 ˜ U − . 269 ˜ D A F B y 1 1 − . 769 ˜ U − . 231 ˜ D L (2 + ˜ U + ˜ γ l ‣ R t/µ ~ K  Lq (U+1) B qq D ) 0 . 067 γ l r lνW L ‣ R b/µ ~ K(R b2 +L b2 )/(R µ 2 +L µ 2 ) 10 − 3 (7 . 55+ . 924 ˜ U +0 . 098 ˜ d ) R Z Z 1+ . 684 ˜ U + . 316 ˜ D 24 . 53 × 10 − 3 R Z W ‣ R b/µ ~ K  Lq (D+1) 1+ . 684 ˜ U + . 316 ˜ D 5 . 38 × 10 − 3 (1+ . 896 ˜ U + . 104 ˜ D ) R Z γ 1+ . 684 ˜ U + . 316 ˜ D Cvetic & Godfrey, arXiv.org:hep-ph/9504216 13 /18

  14. Varying Model Parameters ‣ Only measurement to depend on mixing angle from UUM, ETC and TC2 models 10 � b/ 9 R UUM 8 ETC 7 LRM 6 5 SSM AFSLH SLH 4 3 E6 Model TC2 ALRM LH 2 3-3-1 1 0 0 1 2 3 4 5 6 7 8 9 10 R t/ � 14 /18

  15. R τ / μ - Generation Universality ‣ Directly tests generation M Z’ = 1500 GeV (dark), 2500 GeV (light) universality E6 - � E6 - � ‣ Use collinear E6 - � LRM approximation for M ττ ALRM UUM SSM TC2 The ATLAS Collaboration, ATL-PHYS-PUB-2010-001 LH 5 SLH 10 Rejection ATLAS Preliminary AFSLH 4 10 Simulation 3-3-1 E > 100 GeV T 3 10 ETC 2 10 0 5 10 15 20 25 10 R ��� 1 Likelihood ‣ O(10%) invariant mass resolution Tight/Medium/Loose settings �� 10 ��������������������� not included * �� 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Efficiency Fully Hadronic * 10% cited by Plehn, et al. Phys.Rev.D61:093005,2000 ~7% cited by Mellado, et al. Phys.Lett.B611:60-65,2005 ε  ,1p = 0.31, ε  ,3p = 0.34, ε j < 0.0025 ~8% cited in CERN-OPEN-2008 detector paper (pg 1299) 15 /18

  16. Forward Backward Asym. - A FB ‣ Improve systematics by using pseudorapidity 0.4 (off-peak) UUM E6 ψ TC2 ‣ Forward: | η f | > | η f | LH 331 0.3 E6 η SLH ETC FB 0.2 A E6 χ 0.1 LRM AFSLH β = x a − x b 0 ALRM x a + x b 1500 GeV -0.1 SSM µ + µ - -0.2 2 ln 1 + β 1 1 − β + 1 2 ln 1 + z Y = 1 2 ln 1 + β η f = -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 1 − z 1 − β A (on-peak) FB 0.4 (off-peak) UUM E6 ψ 2 ln 1 + β 2 ln 1 + z Z = 1 2 ln 1 + z 1 1 − β − 1 TC2 η ¯ f = 1 − z LH 1 − z 331 0.3 E6 η SLH ETC FB 0.2 A η f = Y + Z η ¯ f = Y − Z E6 χ 0.1 LRM AFSLH 0 | Y + Z | > | Y − Z | when both Y and Z are like signed. (“Forward”) ALRM | Y + Z | < | Y − Z | when Y and Z are opposite signed. (“Backward”) 2500 GeV -0.1 recalling that Y and Z are signed the same as y Z ‘ and z . SSM µ + µ - -0.2 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 16 /18 Diener, Godfrey & Martin, Phys.Rev.D80:075014 A (on-peak) FB

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend