adaptmc
play

AdaptMC A Control-Theoretic Approach for Achieving Resilience in - PowerPoint PPT Presentation

AdaptMC A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems Alessandro V. Papadopoulos, Enrico Bini, Sanjoy Baruah, Alan Burns Embedded system ! 2 Mixed-criticality system C Each task has its Monitoring


  1. AdaptMC A Control-Theoretic Approach for Achieving Resilience in Mixed-Criticality Systems Alessandro V. Papadopoulos, Enrico Bini, Sanjoy Baruah, Alan Burns

  2. Embedded system ! 2

  3. Mixed-criticality system C Each task has its Monitoring Monitoring B own criticality level System System (from A to D) Control Control System(s) System(s) A Mission Mgmt Mission Mgmt D System System Operator Mgmt Operator Mgmt System System ! 3

  4. Vestal model • Fixed number of distinct criticality levels are defined throughout the system LO and HI criticality • Each piece of code in the system is characterised by The criticality level (LO/HI) Two WCET parameter estimates • Prior to run-time the timing behaviour of all functionalities is validated according to the WCET parameter estimates ! 4

  5. What does happen at run-time if the WCET estimates are “wrong”?

  6. Goals of this paper • Shift the perspective from verification to resiliency What happens when a budget over-run occurs? • Analyse a control-based approach for ensuring run-time resiliency How to adapt the behaviour at run-time? • Provide hard real-time guarantees even with budget over- or under-runs Is it possible to provide such guarantees? ! 6

  7. Outline • AdaptMC : Control-based approach for run-time adaptation • Evaluation • Conclusion ! 7

  8. Definitions HI LO HI LO HI LO … Planned t = 0 time S H (1) S L (1) S H (2) S L (2) HI LO HI LO HI LO … Run-time t = 0 time Budget over-run Budget under-run ! 8

  9. Definitions and assumptions Tentative budget Q S H ( k + 1) = Q H ( k ) + ε H ( k ) S L ( k + 1) = Q L ( k ) + ε L ( k ) Disturbance ε Supply S • Assumptions 1. Executions rarely exceed the WCET values − ε H ≤ ε H ≤ ε H 2. When they do, it is by a “ small amount ” − ε L ≤ ε L ≤ 0 3. The “small amount” can be bounded ! 9

  10. AdaptMC: Control-based approach Compare it with Compute a ε H ( k ) ε L ( k ) a target desired tentative budget budget S H ( k ) Q H ( k ) Q H Mixed-critical AdaptMC system S L ( k ) Q L Q L ( k ) Measure the actual supply Control objectives - Meet the target desired budgets - Preserve the bandwidth of the HI and LO critical systems ! 10

  11. Deeper in AdaptMC • The controller adjusts the tentative budgets Q H ( k + 1) = Q H ( k ) + u H ( k ) Q L ( k + 1) = Q L ( k ) + u L ( k ) • Based on the actual supply and the target budget + K HL u H ( k ) = K HH ( Q H − S H ( k )) γ ( Q L − S L ( k )) u L ( k ) = γ K LH ( Q H − S H ( k + 1)) + K LL ( Q L − S L ( k )) γ = Q L • with Q H Design parameters ! 11

  12. Required properties 1. Compensation property 2. Stability of the closed-loop system 3. Bounding the resource supply ! 12

  13. Compensation property • A disturbance on the HI/LO-criticality server results in an opposite or null e ff ect on the value of the supply of the LO/HI-criticality server HI LO HI … Planned t = 0 time HI LO HI … Run-time t = 0 time OVER-RUN! ! 13

  14. Compensation property • A disturbance on the HI/LO-criticality server results in an opposite or null e ff ect on the value of the supply of the LO/HI-criticality server HI LO HI LO … Planned t = 0 time HI LO HI LO … Run-time t = 0 time COMPENSATE ! 13

  15. Stability K HL K LH K HH K LL ! 14

  16. <latexit sha1_base64="2+jbsF2+/kOvjKLJ32pYro03CU=">ADenichZLdatswFMcVex9d9tG0uxwD0bBsYyVYaUJ2MyjbTaC56GBpC1EwsqykorJsJHkQjPsMe7bd7Ul2s4vJjmBeG8gBiT/n/I50dHSiTHBtguBXy/MfPHz0eO9J+mz5y/2OweHFzrNFWUzmopUXUVEM8ElmxluBLvKFCNJNhldPOlil9+Z0rzVH4z64wtErKSfMkpMdYVHrR+4IituCyI4CvJ4rLdwkx15SI4qwMOfwEcXEWFlhTxTPjdrMWDNacSorJpCyPdyDTnch09ylTewouMW73bqutWSeq6wz6w+Ogj9w6GW3gJjdwHBo1QLQFPHgoAkOtoBDBza5LdjIYeMmN96AmMn4X/DTjfoB7XB+wI50QXOzsPOTxynNE+YNFQrecoyMyiIMpwKljZxrlmGaE3ZMXmVkqSML0o6tEp4RvrieEyVXZJA2tvM6MgidbrJLJk9Rp9N1Y5t8XmuVl+XBRcZrlhkm4uWuYCmhRWcwhjrhg1Ym0FsX9ta4X0mihCjZ3Wqgno7pPvi4tBH9lOfh12Tz+7duyBV+AIvAMIjMEpmIBzMAO09dt7fW8t94f/8h/73/YoF7L5bwE/5k/AtMwxDr</latexit> <latexit sha1_base64="2+jbsF2+/kOvjKLJ32pYro03CU=">ADenichZLdatswFMcVex9d9tG0uxwD0bBsYyVYaUJ2MyjbTaC56GBpC1EwsqykorJsJHkQjPsMe7bd7Ul2s4vJjmBeG8gBiT/n/I50dHSiTHBtguBXy/MfPHz0eO9J+mz5y/2OweHFzrNFWUzmopUXUVEM8ElmxluBLvKFCNJNhldPOlil9+Z0rzVH4z64wtErKSfMkpMdYVHrR+4IituCyI4CvJ4rLdwkx15SI4qwMOfwEcXEWFlhTxTPjdrMWDNacSorJpCyPdyDTnch09ylTewouMW73bqutWSeq6wz6w+Ogj9w6GW3gJjdwHBo1QLQFPHgoAkOtoBDBza5LdjIYeMmN96AmMn4X/DTjfoB7XB+wI50QXOzsPOTxynNE+YNFQrecoyMyiIMpwKljZxrlmGaE3ZMXmVkqSML0o6tEp4RvrieEyVXZJA2tvM6MgidbrJLJk9Rp9N1Y5t8XmuVl+XBRcZrlhkm4uWuYCmhRWcwhjrhg1Ym0FsX9ta4X0mihCjZ3Wqgno7pPvi4tBH9lOfh12Tz+7duyBV+AIvAMIjMEpmIBzMAO09dt7fW8t94f/8h/73/YoF7L5bwE/5k/AtMwxDr</latexit> <latexit sha1_base64="2+jbsF2+/kOvjKLJ32pYro03CU=">ADenichZLdatswFMcVex9d9tG0uxwD0bBsYyVYaUJ2MyjbTaC56GBpC1EwsqykorJsJHkQjPsMe7bd7Ul2s4vJjmBeG8gBiT/n/I50dHSiTHBtguBXy/MfPHz0eO9J+mz5y/2OweHFzrNFWUzmopUXUVEM8ElmxluBLvKFCNJNhldPOlil9+Z0rzVH4z64wtErKSfMkpMdYVHrR+4IituCyI4CvJ4rLdwkx15SI4qwMOfwEcXEWFlhTxTPjdrMWDNacSorJpCyPdyDTnch09ylTewouMW73bqutWSeq6wz6w+Ogj9w6GW3gJjdwHBo1QLQFPHgoAkOtoBDBza5LdjIYeMmN96AmMn4X/DTjfoB7XB+wI50QXOzsPOTxynNE+YNFQrecoyMyiIMpwKljZxrlmGaE3ZMXmVkqSML0o6tEp4RvrieEyVXZJA2tvM6MgidbrJLJk9Rp9N1Y5t8XmuVl+XBRcZrlhkm4uWuYCmhRWcwhjrhg1Ym0FsX9ta4X0mihCjZ3Wqgno7pPvi4tBH9lOfh12Tz+7duyBV+AIvAMIjMEpmIBzMAO09dt7fW8t94f/8h/73/YoF7L5bwE/5k/AtMwxDr</latexit> <latexit sha1_base64="2+jbsF2+/kOvjKLJ32pYro03CU=">ADenichZLdatswFMcVex9d9tG0uxwD0bBsYyVYaUJ2MyjbTaC56GBpC1EwsqykorJsJHkQjPsMe7bd7Ul2s4vJjmBeG8gBiT/n/I50dHSiTHBtguBXy/MfPHz0eO9J+mz5y/2OweHFzrNFWUzmopUXUVEM8ElmxluBLvKFCNJNhldPOlil9+Z0rzVH4z64wtErKSfMkpMdYVHrR+4IituCyI4CvJ4rLdwkx15SI4qwMOfwEcXEWFlhTxTPjdrMWDNacSorJpCyPdyDTnch09ylTewouMW73bqutWSeq6wz6w+Ogj9w6GW3gJjdwHBo1QLQFPHgoAkOtoBDBza5LdjIYeMmN96AmMn4X/DTjfoB7XB+wI50QXOzsPOTxynNE+YNFQrecoyMyiIMpwKljZxrlmGaE3ZMXmVkqSML0o6tEp4RvrieEyVXZJA2tvM6MgidbrJLJk9Rp9N1Y5t8XmuVl+XBRcZrlhkm4uWuYCmhRWcwhjrhg1Ym0FsX9ta4X0mihCjZ3Wqgno7pPvi4tBH9lOfh12Tz+7duyBV+AIvAMIjMEpmIBzMAO09dt7fW8t94f/8h/73/YoF7L5bwE/5k/AtMwxDr</latexit> Stability 1 K HL K LH = 0 K HL K LH = 0.01 0.9 K HL K LH = 0.02 0.8 K HL K LH = 0.05 K 5 K HL K LH = 0.1 0.7 K HL K LH = 0.2 0.6 K HL K LH = 0.3 K LL K 4 0.5 K HL K LH = 0.35 0.4 K 1 K i = { K HH , K HL , K LH , K LL } 0.3 K 3 0.2 K 1 = { 0 . 4 , 0 . 1 , 0 . 1 , 0 . 35 } K 2 K 2 = { 0 . 15 , 0 . 1 , 0 . 1 , 0 . 15 } 0.1 K 3 = { 0 . 25 , 0 . 1 , 0 . 1 , 0 . 25 } 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 K 4 = { 0 . 5 , 0 . 1 , 0 . 1 , 0 . 5 } K HH K 5 = { 0 . 75 , 0 . 1 , 0 . 1 , 0 . 75 } ! 15

  17. Bounding the resource supply Idle Active intervals intervals S (1) Z (1) S (2) Z (2) S (3) Z (3) … t = 0 time I 0 I 1 I 2 sbf ( t ) n 0 + n − 1 S (3) σ ∑ σ S ( n ) = inf S ( k ) n 0 k = n 0 S (2) σ n 0 + n − 1 ∑ S (1) σ Z ( n ) = sup Z ( k ) σ n 0 t k = n 0 Z (1) Z (2) Z (3) σ σ σ ! 16

  18. Bounding the resource supply n 0 + n − 1 ∑ σ S ( n ) = inf S ( k ) n 0 k = n 0 n 0 + n − 1 ∑ σ Z ( n ) = sup Z ( k ) n 0 k = n 0 HI-Criticality LO-Criticality σ S ( n ) = nQ H − ε H 풩 HH ( n ) − ε L σ S ( n ) = nQ L − ε H 풩 LH ( n ) − ε L 2 ( ℐ HL ( n ) + 풩 HL ) 2 ( ℐ LL ( n ) + 풩 LL ) σ Z ( n ) = nQ L + ε H 풩 LH ( n ) + ε L σ Z ( n ) = nQ H + ε H 풩 HH ( n ) + ε L 2 ( ℐ LL ( n ) + 풩 LL ) 2 ( 풥 HL ( n ) + 풩 HL ) ∞ ∑ 풩 ij ( n ) = | g ij ( k ) − g ij ( k − n ) | k =0 with k { r i L ( k ) − r i L ( k − n ) } Proof and details in ℐ i L ( n ) = sup the paper k { r i L ( k − n ) − r i L ( k ) } 풥 i L ( n ) = sup ! 17

  19. Evaluation — sbf 100 100 K 1 K 1 hi -criticality lo -criticality K 2 K 2 K 3 K 3 sbf H ( t ) sbf L ( t ) K 4 K 4 50 50 K 5 K 5 0 0 0 50 100 150 200 0 50 100 150 200 t t K 1 maximises both the sbf ! 18

  20. Evaluation — Transient behaviour 1 ε H ε L 0 . 5 0 ε − 0 . 5 − 1 12 K 1 K 2 K 3 K 4 K 5 11 S H K 1 minimises the effect of the 10 transient behaviour 10 K 1 K 2 K 3 K 4 K 5 9 S L 8 7 0 10 20 30 40 50 60 70 80 90 100 k ! 19

  21. Baseline for comparison — PPA • Period-Preserving Approach (PPA) Simple approach When HI-criticality over-run, the LO-criticality server compensate by preserving the period S H ( k + 1) = Q H + ε H ( k ) S L ( k + 1) = max( P − S H ( k + 1),0) + ε L ( k ) • where P is the target period that needs to be maintained ! 20

  22. Comparative results AdaptMC PPA ε H ε L ε H ε L 2 ε 0 14 S H S L S H S L 12 10 S 8 6 0 . 8 S L /S H 0 . 6 0 . 4 0 20 40 60 80 100 0 20 40 60 80 100 k k

  23. Comparative results AdaptMC PPA ε H ε L ε H ε L Impulsive 2 disturbance ε 0 14 S H S L S H S L 12 10 S 8 6 0 . 8 S L /S H 0 . 6 0 . 4 0 20 40 60 80 100 0 20 40 60 80 100 k k

  24. Comparative results AdaptMC PPA ε H ε L ε H ε L Impulsive 2 disturbance ε 0 Constant disturbance 14 S H S L S H S L 12 10 S 8 6 0 . 8 S L /S H 0 . 6 0 . 4 0 20 40 60 80 100 0 20 40 60 80 100 k k

  25. Comparative results AdaptMC PPA ε H ε L ε H ε L Impulsive 2 disturbance ε 0 Constant disturbance 14 S H S L S H S L 12 Increasing 10 S disturbance 8 6 0 . 8 S L /S H 0 . 6 0 . 4 0 20 40 60 80 100 0 20 40 60 80 100 k k

  26. Conclusion and future work • Control-theoretic approach for run-time adaptation in mixed-critical systems Compensation property Stability conditions Supply bound functions • Future work Optimal gain calculation More criticality levels ! 22

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend