eucard 2
play

EuCARD-2 Enhanced European Coordination for Accelerator Research - PDF document

CERN-ACC-SLIDES-2014-0105 EuCARD-2 Enhanced European Coordination for Accelerator Research & Development Presentation LHC & Future High-Energy Frontier Circular Colliders Zimmermann, F (CERN) 12 August 2013 The EuCARD-2 Enhanced


  1. HL-LHC Official Beam Parameters Parameter nominal 25ns 50ns 6.2 10 14 and 4.9 10 14 p/beam N 1.15E+11 2.2E+11 3.5E+11 n b 2808 2808 1404 beam current [A] 0.58 1.12 0.89 x-ing angle [ m rad] 300 590 590 beam separation [ s ] 10 12.5 11.4 b * [m] 0.55 0.15 0.15 e n [ m m] 3.75 2.5 3.0 e L [eVs] 2.51 2.5 2.5 energy spread 1.20E-04 1.20E-04 1.20E-04 bunch length [m] 7.50E-02 7.50E-02 7.50E-02 IBS horizontal [h] 106 20.0 20.7 IBS longitudinal [h] 60 15.8 13.2 Piwinski parameter 0.68 3.1 2.9 geom. reduction 0.83 0.35 0.33 (Leveled to 5 10 34 cm -2 s -1 beam-beam / IP 3.10E-03 3.9E-03 5.0E-03 and 2.5 10 34 cm -2 s -1 ) Peak Luminosity 1 10 34 7.4 10 34 8.5 10 34 Virtual Luminosity 1.2 10 34 21 10 34 26 10 34 Events / crossing (peak & leveled L) 19 210 475 140 140 27 31

  2. luminosity leveling at the HL-LHC example: maximum pile up 140 (s inel ~85 mbarn)

  3. luminosity leveling at the HL-LHC example: maximum pile up 140

  4. luminosity & integrated luminosity during 30 h at the HL-LHC example: maximum pile up 140 ~4 fb -1 per day, with 40% of efficiency ~250 fb -1 /year

  5. final goal : 3000 fb -1 by 2030’s… Full project Enhanced consolidation 35

  6. some HL-LHC ingredients SC link new final quadrupoles 11-T dipoles for dispersion • Nb 3 Sn instead of Nb-Ti • move radiation suppressors • larger aperture • Nb 3 Sn instead of Nb-Ti sensitive power allowing smaller b * converters away from • provide space for extra machine collimators catching off • first prototype, 20 m -energy protons or ions – 20 kA, under test at at ALICE, collimator CERN! sections, ATLAS & CMS LQS03 (90 mm ap., 3.7 m long): 208 T/m @4.6 K, 210 T/m @1.9 K T. Baer • also of interest for electrical power June 2013 distribution 1-m model tested in April 2013, tests of novel MgB 2 HQ02a (120 mm, 1.5 m long): B nom =11 T achieved! 150 T/m @4.6 K, 170 T/m @1.9 K and HTS (YBCO and BSCCO ) cables Next: 2-m single bore, then 2-in-1 Goal: 150 mm ap, 140 T/m

  7. HL-LHC optics S. Fartoukh Achromatic Telescopic Squeeze (ATS), «fully proven» MDs ( b * = 15 cm «easy», room for b * ~ 10-12 cm) squeeze through the arcs to enhance effective sextupole strength; tested with beam in LHC MDs of 2011 & 2012 typical ATS collision optics with IR1 & IR5 squeezed down to b * =10 cm

  8. luminosity reduction due to crossing angle is more pronounced at smaller b * “ Piwinski angle” luminosity reduction factor q s 1    c z R ; q s   2 2 1 x q c /2 crab cavities nominal LHC eff. beam size: s * x,eff ≈ s x * / R q HL-LHC ~1/ b *

  9. schematic of crab crossing q c • RF crab cavity deflects head and tail in opposite direction so that collision is effectively “head on” for luminosity and tune shift • bunch centroids still cross at an angle (easy separation) • 1 st proposed in 1988, used in operation at KEKB since 2007 until recently plan was to vary crab cavity voltage for leveling, but this would change size of luminous region & is disliked by experiments (instead leveling by b * or offset?)

  10. HL-LHC needs compact crab cavities only 19 cm beam separation, but long bunches Final down-selected compact cavity designs for the LHC upgrade: 4-rod cavity design by Cockcroft I. & JLAB (left), l /4 TEM cavity by BNL (centre), and double-ridge l /2 TEM cavity by SLAC & ODU (right). Prototype compact Nb-Ti crab cavities for the LHC: 4-rod cavity (left) and double-ridge cavity (right).

  11. PoP double-ridge cavity achieved 7 MV deflecting voltage cw in 1 st attempt 1.0E+10 J. Delayen S. De Silva 2.0 K et al - ODU, SLAC, JLAB, Niowave • Expected Q 0 1.0E+09 Q 0 = 6.7 × 10 9 4.2 K – At R S = 22 n Ω Quench – And R res = 20 n Ω • Achieved HL-LHC goal: Q 0 = 4.0 × 10 9 3.3 MV in operation • 1.0E+08 Achieved fields E T (MV/m) 0 5 10 15 20 +09 – E T = 18.6 MV/m V T (MV) 0.0 1.5 3.0 4.5 6.0 7.5 .0 4 9 – V T = 7.0 MV V (MV) E P (MV/m) 0 20 40 60 80 .0 9 – E P = 75 MV/m 0 28 56 84 112 140 B P (mT) – B P = 131 mT better than required! J. Delayen, LARP CM20

  12. HL-LHC preliminary budget estimate Improving Full Total HL-LHC Consolidation performance Mat. (MCHF) 476 360 836 Pers. (MCHF) 182 31 213 Pers. (FTE-y) 910 160 1070 TOT (MCHF) 658 391 1,049

  13. RLIUP 2013 “Review of LHC and injector upgrade plans” CERN, October 2013 3 scenarios PICs US1 Upgrade Scenario 1 US2 Performance Upgrade Improving Scenario 2 Consolidations +HHRF?+DS +crab collimators? cavities, e- lens,… integrated 1000- 2000/fb 3000/fb luminosity by 2035 1200/fb physics needs & motivation?; also, reasons to go >3000/fb?

  14. Large Hadron electron Collider (LHeC) ERL LHeC: recirculating linac with energy recovery

  15. LHeC Conceptual Design Report LHeC CDR published in J. Phys. G: Nucl. Part. Phys. 39 075001 (2012) ~600 pages

  16. LHeC ERL layout two SC linacs, 3-pass up, 3-pass down; 6.4-mA 60-GeV e - ’s collide w. LHC p /ions, e - RF grad ~20 MV/m, 800 MHz A. Bogacz, O. Brüning, M. Klein, D. Schulte, ( C =1/3 LHC allows for ion clearing gaps) F. Zimmermann, et al

  17. LHeC SRF & ERL test facility design under study

  18. LHeC baseline & Higgs factory parameters L ep ~2 10 34 cm -2 s -1

  19. SAPPHiRE

  20. gg collider Higgs factory IR s -channel production; lower energy; no e + source physics few J pulse energy with l ~350 nm passive optical cavity → relaxed laser parameters power evolution of cw double-clad fiber lasers with diffraction limited beam quality over the past decade: factor 100 increase! laser optical cavity Source: Fiber lasers and amplifiers: an ultrafast performance evolution, Jens Limpert, Thomas Schreiber, and Andreas Tünnermann, K. Moenig et al, DESY Zeuthen Applied Optics, Vol. 49, No. 25 (2010)

  21. SAPPHiRE gg Higgs Factory Reconfigured LHeC scale ~ European XFEL, about 10-20k Higgs per year SAPPHiRE: Small Accelerator for Photon-Photon Higgs production using Recirculating Electrons

  22. laser options for SAPPHiRE EuCARD SAPPHiRE Day 19 February 2013 industry Livermore J. Gronberg, LLNL Y. Zaouter, Amplitude Systems full power 10 J at 10 kHz w/o optical cavity! ICAN G. Mourou, LOA; M. Velasco, Northwestern U.

  23. LHeC Higgs factory comparison (1 year = 10 7 s at design luminosity). machine LHeC LHeC-HF SAPPHiRE 0.06 ( gg luminosity 0.1 ( ep ) 2 ( ep ) [10 34 cm -2 s -1 ] > 125 GeV) cross section ~200 fb ~200 fb >1.7 pb no. Higgs/yr 2k 40k >10k

  24. higher-energy pp colliders

  25. circular pp Higgs factories 1 M Higgs produced so far LHC : 1st circular Higgs factory! – more to come! E CM = 8-14 TeV, 𝑀~ 10 34 cm -2 s -1 15 H bosons / min – and more to come HL-LHC: planned (~2022-2035): 10x more Higgs E CM = 14 TeV, 𝑀~ 5x10 34 cm -2 s -1 (leveled) HE-LHC : proposed in LHC tunnel (2038-?) 6x higher cross section E CM = 33 TeV, 𝑀 ≥ 5 x10 34 cm -2 s -1 for H self coupling or VHE-LHC : proposed in new 80-100 km tunnel (2040?) E CM = 84-104 TeV, 𝑀 ≥ 5 x10 34 cm -2 s -1 42x higher cross section for H self coupling THE ultimate Higgs factory!

  26. High-Energy LHC HE-LHC 20-T dipole magnets S-SPS? higher energy 2-GeV Booster transfer lines Linac4

  27. 20-T dipole magnet beam pipe E. Todesco, L. Rossi, P.. McIntyre

  28. VHE-LHC VHE-LHC VHE-LHC-LER

  29. 80 or 100-km tunnel for VHE-LHC the same tunnel could host an e + e - Higgs J. Osborne, C. Waaijer, CERN, ARUP & GADZ factory “TLEP” and a highest -luminosity highest-energy e-p /A collider

  30. TLEP/VHE-LHC tunnel site visit (?!) on Lake Geneva 12 June 2013

  31. HE-LHC & VHE-LHC parameters O. Dominguez, L. Rossi, F. Zimmermann parameter LHC HL-LHC HE-LHC VHE-LHC c.m. energy [TeV] 14 14 33 100 circumference [km] 26.7 26.7 26.7 80 (or 100) dipole field [T] 8.33 8.33 20 20 (or 16) beam current [A] 0.58 1.12 0.48 0.49 rms IP spot size [ m m] 16/7 7.1 (min) 5.2 6.7 stored beam energy [MJ] 362 694 701 6610 SR power per ring [kW] 3.6 7.3 96.2 2900 arc SR heat load [W/m/apert.] 0.17 0.33 4.35 43.4 energy loss per turn [keV] 6.7 6.7 201 5857 critical photon energy [eV] 44 44 575 5474 longit. SR emit. damping time [h] 12.9 12.9 1.03 0.32 peak events / crossing 27 135 (lev.) 147 171 peak luminosity [10 34 cm -2 s -1 ] 1.0 5.0 ≥5.0 ≥5.0 beam lifetime due to burn off [h] 45 15.4 5.7 14.8 optimum av. luminosity / day [fb -1 ] 0.5 2.8 1.4 2.1

  32. VHE-LHC: time evolution over 11 h in physics with p burn off & controlled blow up O. Dominguez luminosity ⊥ & ∥ emittances & bunch intensity SR damping counteracted by transverse + longit. noise injection (constant tune shift & bunch length) HE-LHC &VHE-LHC luminosities could greatly improve for bunch spacings < 25 ns, e.g. by factor 5 for 5 ns, making better use of strong radiation damping! are 5 ns spacing & 2.5x10 35 cm -2 s -1 acceptable for detectors?

  33. circular e + e - Higgs factories • 2012 - LHC discovered Higgs boson at 126 GeV • cross section for H production in e + e - collisions maximum at ~15% higher beam energy than LEP2 • c ircular collider (“TLEP”) in new 80-100 tunnel: 300x LEP2 luminosity at 4 IPs (precision H studies) • recipe for high luminosity: smaller b * (esp. y ), lower emittance ( x & y ), top-up injection • operation up to 𝒖 𝒖 threshold ; very high luminosity at Z pole & WW threshold (+ polarized beams! ) • in same tunnel : pp collider up to 100-TeV c.m. (VHE-LHC), and ep collider • TLEP will enhance VHE-LHC physics case

  34. luminosity - past&planned e + e - colliders TLEP-Z S. Henderson TLEP-W TLEP-H TLEP-t the circular route

  35. TLEP beam lifetime: two limits 1. radiative Bhabha scattering ( s ≈0.215 barn) LEP2: t beam,LEP2 ~ 6 h TLEP with L ~5x10 34 cm − 2 s − 1 at 4 IPs : t beam,TLEP ~21 minutes, unavoidable 2. beamstrahlung (synchr. rad. during the collision) mitigated by: (1) large momentum acceptance h (2) flat beams [i.e. small e y & large b x * ] (3) fast replenishing (M. Koratzinos, V.Telnov, K. Yokoya, M. Zanetti,…)

  36. TLEP - circular e + e - collider to study the «Higgs boson» X(126) a relatively young concept (2011) A. Blondel short beam lifetime (~ t LEP2 /40) due to high luminosity supported by top-up injection (used at KEKB, PEP- II, SLS,…)

  37. top-up injection: schematic cycle beam current in collider (15 min. beam lifetime) 100% 99% almost constant current energy of accelerator ring 120 GeV injection into collider injection into accelerator 20 GeV acceleration time = 1.6 s (assuming SPS ramp rate) 10 s

  38. K. Oide

  39. top-up performance at PEP-II/BaBar J. Seeman Before Top-Up After Top-Up J. Seeman a verage luminosity ≈ peak luminosity

  40. proposed circular e + e - Higgs factories SLAC/LBNL LEP3: 27 km TLEP: 80 or 100 km SuperTRISTAN in design: TLEP (LEP4): 80 km near Geneva Tsukuba: 40 (& 60 27 km near Geneva or HF in 27-km or 80 “TLEP”) km LHC tunnel (“LEP3”) Mike Koratzinos et al FNAL site filler, 16 km Chinese Higgs Factory CEPC + Super pp Collider FNAL Snowmass proposal: 100 km “TLEP” 50 or 70 km Qing QIN et al

  41. TLEP Z TLEP W TLEP H TLEP t parameters 91 240 350 E c.m. [GeV] 160 1440 29.8 6.7 beam current [mA] 154 7500 167 160 20 # bunches/beam 3200 4.0 3.7 0.88 7.0 # e − /bunch [10 11 ] 1.0 e x , e y [nm] 29.2, 0.06 3.3,0.017 7.5, 0.015 2, .002 β ∗ 500, 1 200, 1 500, 1 1000, 1 x,y [mm] σ ∗ x,y [ μ m] 121, 0.25 26, 0.13 61, 0.12 45,.045 126,.13 σ tot 2.93 2.11 0.77 1.95 z,rms [mm] (w BS) 1.98 0.03 1.7 7.5 E SR loss /turn [GeV] 0.3 2 6 12 V RF , tot [GV] 2 ξ x,,y /IP 0.068 0.094 0.057 0.086 𝓜 /IP[10 34 cm − 2 s − 1 ] 59 5 1.3 1.0 16 4 4 4 #IPs 4 t beam [min] (rad.B) 99 24 21 26 38 t beam [min] (BS, h =2%) >10 25 38 14 2 >10 6

  42. TLEP W TLEP H TLEP t ZHH&ttH parameters 240 350 500 E c.m. [GeV] 160 29.8 6.7 1.6 beam current [mA] 154 167 160 20 10 # bunches/beam 3200 TLEP 3.7 0.88 7.0 3.3 # e − /bunch [10 11 ] 1.0 e x , e y [nm] 3.3,0.017 7.5, 0.015 2, .002 4., 0.004 energy β ∗ 200, 1 500, 1 1000, 1 1000, 1 x,y [mm] σ ∗ x,y [ μ m] 26, 0.13 61, 0.12 45,.045 126,.13 63, 0.063 upgrade σ tot 2.11 0.77 1.95 1.81 z,rms [mm] (w BS) 1.98 1.7 7.5 31.4 E SR loss /turn [GeV] 0.3 6 12 35 V RF , tot [GV] 2 ξ x,,y /IP 0.094 0.057 0.075 0.086 𝓜 /IP[10 34 cm − 2 s − 1 ] 5 1.3 1.0 0.5 16 4 4 4 #IPs 4 t beam [min] (rad.B) 24 21 26 13 38 t beam [min] (BS, h =2% ) >10 6 3 ( h =3%) 38 14 2

  43. Y. Cai, optics – TLEP arc cell B. Holzer, H. Burkhardt dispersion beta functions from LEP to TLEP r =9100 m, L cell =50 m r =3100 m, L cell =79 m e x =48 nm at 104.5 GeV → e x =1.5 nm at 175 GeV 𝜁 ∝ 𝛿 2 𝜄 3 : at lower beam energy increase cell length (“ q ”) x2 or x6!

  44. optics - energy sawtooth K. Oide SuperTRISTAN 240 GeV, 40 km, 8 segments 350 GeV, 80 km, 16 segments optics correction by shifting sextupoles onto sawtooth orbit → separate arcs/rings for e + and e -

  45. – a TLEP demonstrator SuperKEKB beam commissioning will start in early 2015 • b y *=300 m m (TLEP: 1 mm) • lifetime 5 min (TLEP: ~15min) • e y / e x =0.25% ! (TLEP: 0.2%) • off momentum acceptance (±1.5%, TLEP: ±2%) • e + production rate (2.5x10 12 /s, TLEP: <1x10 11 /s)

  46. other TLEP challenges • efficient RF system BNL 5-cell 700 MHz cavity – need 12 GeV/turn at 350 GeV • ~600 m of SC RF cavities @ 20 MV/m – LEP2 had 600 m at 7 MV/m – very high power : up to 200 kW / cavity in collider ring • power couplers similar to ESS – RF Coupler (ESS/SPL) 700-800 MHz preferred • operation at Z pole – 7500 bunches : e  source, impedance effects, parasitic collisions • two separate rings for e  and e - beams will help here too

  47. polarization R. Assmann LEP loss of polarization LEP due to growing energy spread observations 𝑭 𝟑 𝝉 𝑭 ∝ 𝝇 + model predictions polarization scaling (energy spread!): LEP at 61 GeV → TLEP at 81 GeV TLEP TLEP optimized scenario U Wienands, April 2013  100 keV beam energy r = 9000 m, C = 80 km calibration by resonant depolarization (using pilot lower energy spread, bunches) around Z peak high polarization up and W pair threshold: to W threshold  m Z ~0.1 MeV,  Z ~ 0.1 MeV,  m W ~ 0.5 MeV A. Blondel

  48. e + e - Higgs factories: luminosity ultimate precision at Z , WW , ZH ; sensitive to New Physics in multi- TeV range & to SM closure → case for VHE-LHC ultimate energy reach up to 1 or 3 TeV ; direct searches for New Physics

  49. vertical rms IP spot sizes in nm in regular LEP2 3500 font: b y * : achieved KEKB 940 5 cm→ in italics: 1 mm SLC 500 design values TLEP-H 120 ATF2, FFTB 60 ( 35 ), 60 ( 40 ) TLEP will learn SuperKEKB 50 from ATF2 & SuperKEKB ILC 5 – 8 CLIC 1 – 2

  50. Higgs factory performances Precision on couplings, cross sections, mass, width, Summary of the ICFA HF2012 workshop (FNAL, Nov. 2012) arxiv1302:3318 Circular Higgs Factory really goes to precision at few per mill level

  51. CERN Courier article, 19 July 2013 John Ellis

  52. more details: this Friday – two talks on Circular Higgs Factory TLEP, Mike Koratzinos, 14:40 CEPC, Qing Qin, 15:50

  53. VHE-LHC + TLEP L. Rossi transmission line magnet HE-LHC- LER (0.17→1.5 T) TLEP collider (0.07 or 0.05T) (B. Foster, H. Piekarz) TLEP injector (0.007→0.05/7 T) 20 mm thick shield around cable Gaps: 2 x V30xH60 mm HE-LHC (20 T) super-resistive cable multipurpose based on MgB 2 SC tunnel only 12 MEuro/100 km!

  54. common modular detectors for e + e - and pp collisions!? GMS-4T (VHE-LHC) GMS-2T (TLEP) E. Meschi

  55. possible long-term strategy CERN implementation TLEP (80-100 km, e + e - , up to ~350 GeV c.m.) PSB PS (0.6 km) LHC (26.7 km) SPS (6.9 km) HL-LHC VHE-LHC LHeC & SAPPHiRE? ( pp , up to 100 TeV c.m.) & e ± (120 GeV) – p (7, 16 & 50 TeV) collisions ( [(V)HE-]TLHeC ) ≥ 50 years of e + e - , pp , ep/A physics at highest energies

  56. conclusions – LHC & HL-LHC • LHC running well & predictably ; LS1 in progress • in 2015 LHC will operate close to design energy with peak luminosity likely to exceed the design • new performance limits will be encountered (e.g. triplet cooling limit) • baseline for 2015 is 25 ns , but uncertainties: e- cloud & UFOs; backup option: 50 ns w leveling • HL-LHC well defined, prototype tests successful • plan & goals for HL-LHC under review - budget considerations & LHC results

  57. conclusions – beyond HL-LHC • HL-LHC develops the technology ( Nb 3 Sn magnets, 20-kA HTS cables) for future higher energy pp colliders : HE-LHC (33 TeV c.m.) and/or VHE-LHC (100 TeV c.m.) • TLEP , in VHE-LHC tunnel , being studied as highest- luminosity e + e - Higgs factory - excellent energy resolution, & superb performance at Z pole , W & top threshold • coherent long-term strategy emerging, based on sharing, staging & synergies (high performance, minimum total cost, maximum energy reach)

  58. possible long-term time line 1980 2000 1990 2010 2030 2020 2040 Design, LHC Constr. Physics Proto. R&D Design, HL-LHC Constr. Physics R&D Design, Physics LHeC/SAPPHiRE? Constr. R&D Design, HE-LHC Physics Constr. { R&D ? Design, or TLEP Physics Constr. R&D Design, Constr. Physics VHE-LHC R&D

  59. “ When the wind of change blows, some build walls, while others build windmills.” 风向转变时 , 有人筑墙 , 有人造风车 ancient Chinese proverb 谢谢

  60. spare slides

  61. TLEP design study: http://cern.ch/tlep where you can subscribe for work , information, newsletter , etc… R. Aleksan, A. Blondel, J. Ellis, P. Janot, M. Koratzinos, et al Global endeavour: collaborators from Europe, US, Japan , China ,… Next events: TLEP workshops 25-26 July 2013, Fermilab 16-18 October, CERN Joint VHE-LHC+ TLEP kick-off meeting in February 2014

  62. synchroton-radiation: heat load TLEP has >10 times less SR heat load per meter than PEP-II or SPEAR ! (though higher photon energy) N. Kurita, U. Wienands, SLAC

  63. synchrotron radiation: activation A. Fasso 3 rd TLEP3 Day LEP design: ( r~ 3100 m) higher photon energies than TLEP! (175 GeV, r =9.1 or 11 km)

  64. TLEP cost breakdown – extremely rough (GEuro) TLEP 3.1 (1) Bare tunnel (with shafts & 8 caverns) 1.0 (2) Services & additional infrastructure (electricity, cooling, ventilation, service cavern, RP, surface structure, access roads) 0.7 (3) RF system 0.2 (4) Cryo system Vacuum system & RP 0.5 (5) 0.8 (6) Magnet system for collider & injector ring Pre-injector complex SPS reinforcements 0.5 Total 6.8 (1): J. Osborne, Amrup study (2): very rough guess, conservative escalated extrapolation from LEP (3): O. Brunner, Note, May 2013; B. Rimmer, SRF cost /GeV/Watt for CEBAF upgrade, 2010 (4): 2x LHeC cryo plant cost [Friedrich Haug, 4 th TLEP workshop] (5): factor 2.5 higher than KEK estimate for 80 km ring (6): 24,000 magnets for collider & injector; cost per magnet 30 kCHF (LHeC study); 10% added; no cost saving from mass production assumed Note: detector costs not included

  65. Performance Comparison Need sub-percent precision for sensitivity to multi-TeV New Physics – Compare (LHC), HL-LHC, ILC, TLEP ± 1% HF2012 • TLEP reaches the needed sub-percent accuracy J. Ellis et al. • much theoretical work also needed P. Janot see talk by A. Blondel

  66. see talk by A. Blondel TLEP TeraZ, Oku-W & Mega-Top • Precision tests of EWSB Asymmetries, Lineshape TLEP : Repeat the LEP1 physics programme every 15 min  Exquisite beam energy determination (10 keV)\ LEP ILC TLEP Transverse polarization up to the WW threshold √s ~ m Z Mega-Z Giga-Z Tera-Z 10 12 (>10 11 #Z / year 2×10 7 Few 10 9 b,c, t ) Polarization Yes (T) Easy  Measure sin 2 θ W to 2.10 -6 from A LR WW threshold scan Yes (T,L) Longitudinal polarization at the Z pole Precision vs LEP1 1 1/5 to 1/10 ~1/100 Error on m Z ,  Z 2 MeV – < 0.1 MeV √s ~ 2m W #W pairs / year Few dozens 2×10 5 2.5×10 7 Polarization No Easy Yes (T) WW production Error on m W 220 MeV 7 MeV 0.5 MeV √s = 240 GeV Oku-W # W pairs / 5 years 4×10 4 4×10 6 2×10 8 Error on m W 33 MeV 3 MeV 0.5 MeV - tt threshold scan √s ~ 350 GeV Mega-Top # top pairs / 5 years – 100,000 500,000 Error on m top – 30 MeV 13 MeV Error on l t – 40% 15% – measure m Z ,  Z to < 0.1 MeV, m W to < 1 MeV, sin 2 θ W to 2.10 -6 from A LR P. Janot – TLEP beam polarization up to W threshold, for energy calibration

  67. interim R. Aleksan, A. Blondel, J. Ellis, P. Janot, M. Koratzinos, M. Zanetti, F. Zimmermann ad interim J. Ellis ad F. Zimmermann P. Janot ad interim ad interim interim

  68. parameters for TLHeC & VHE-TLHeC (e - at 120 GeV) collider parameters TLHeC VHE-TLHeC e ± e ± species p p beam energy [GeV] 120 7000 120 50000 bunch spacing [ m s] 3 3 3 3 bunch intensity [10 11 ] 5 3.5 5 3.5 beam current [mA] 24.3 51.0 24.3 51.0 rms bunch length [cm] 0.17 4 0.17 2 rms emittance [nm] 10,2 0.40 10,2 0.06 b x,y *[cm] 2,1 60,5 0.5,0.25 60,5 s x,y * [ m m] 15, 4 6, 2 beam-beam parameter x 0.05, 0.09 0.03,0.01 0.07,0.10 0.03,0.007 hourglass reduction 0.63 0.42 CM energy [TeV] 1.8 4.9 luminosity [10 34 cm -2 s -1 ] 0.5 1.6

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend