erm
play

erm I Michael Introduction to Topics Mossinghoff Summer@ICERM - PowerPoint PPT Presentation

Complex Pisot Numbers and Newman Polynomials erm I Michael Introduction to Topics Mossinghoff Summer@ICERM 2014 Davidson College Brown University Mahlers Measure n n a k z k = a n X Y f ( z ) = ( z k ) in Z [ z ]. k =0 k


  1. Complex Pisot Numbers and Newman Polynomials erm I Michael Introduction to Topics Mossinghoff Summer@ICERM 2014 Davidson College Brown University

  2. Mahler’s Measure n n a k z k = a n X Y • f ( z ) = ( z − β k ) in Z [ z ]. k =0 k =1 n Y • M ( f ) = | a n | max { 1 , | β k |} . k =1 ✓Z 1 ◆ log | f ( e 2 π it ) | dt • M ( f ) = exp . 0 • (Kronecker, 1857) M ( f ) = 1 ⇔ f ( z ) is a product of cyclotomic polynomials, and a power of z . • Lehmer’s problem (1933): Is there a constant c > 1 so that if M ( f ) > 1 then M ( f ) ≥ c ?

  3. • M ( f ) = M (– f ( z )) = M ( f (– z )) = M ( f ( z k )) = M ( f * ). • Here, f * ( z ) is defined as z n ⋅ f (1/ z ): reciprocal of f . • Some results on Lehmer’s Problem: • M ( z 10 + z 9 – z 7 – z 6 – z 5 – z 4 – z 3 + z +1) = 1.17628… . • (Smyth 1971) If f ( z ) ≠ ± f * ( z ) and f (0) ≠ 0, then M ( f ) ≥ M ( z 3 – z – 1) = 1.3247… • If 1 < M ( f ) < 1.17628… then deg( f ) ≥ 56. • (Borwein, Dobrowolski, M., 2007) If f ( z ) has all odd coe ffi cients and degree n then M ( f ) ≥ 1 . 4935 − . 61 n .

  4. Measures and Heights • Height of f : H ( f ) = max{| a k | : 0 ≤ k ≤ n }. • For r > 1, let A r denote the complex annulus A r = { z ∊ C : 1/ r < | z | < r }. • If H ( f ) = 1 and f ( β ) = 0 ( β ≠ 0) then β ∊ A 2 .

  5. Measures and Heights • Height of f : H ( f ) = max{| a k | : 0 ≤ k ≤ n }. • For r > 1, let A r denote the complex annulus A r = { z ∊ C : 1/ r < | z | < r }. • If H ( f ) = 1 and f ( β ) = 0 ( β ≠ 0) then β ∊ A 2 . • Bloch & Pólya (1932); Pathiaux (1973): If M ( f ) < 2 then there exists F ( z ) with H ( F ) = 1 and f ( z ) | F ( z ).

  6. Bloch and Pólya • f ( z ) irreducible, degree d , M ( f ) < 2. • So f ( z ) monic, and has at least one root | β 1 | < 1. • g ( z ): height 1, degree n , f is not a factor of g . • |Res( f , g )| = | g ( β 1 ) g ( β 2 )… g ( β d )| ≥ 1. • | g ( β k )| ≤ ( n + 1) ⋅ max{1, | β k | n }. • | g ( β 2 ) · · · g ( β d ) | ≤ ( n + 1) d − 1 M ( f ) n . 1 • | g ( β 1 ) | ≥ ( n + 1) d − 1 M ( f ) n .

  7. 1 • | g ( β 1 ) | ≥ ( n + 1) d − 1 M ( f ) n . • If h 1 , h 2 have {0, 1} coe ffi cients, degree ≤ n , and f does not divide h 1 – h 2 , then 1 | h 1 ( β 1 ) − h 2 ( β 1 ) | ≥ ( n + 1) d − 1 M ( f ) n . • There are 2 n +1 polynomials h ( z ) with {0, 1} coe ffi cients and deg( h ) ≤ n . • Each has | h ( β 1 )| ≤ n + 1. • Collision guaranteed if 2 n +1 > ( n +1) d M ( f ) n , which occurs for large n if M ( f ) < 2.

  8. Newman Polynomials • Donald Newman. • All coe ffi cients 0 or 1, and constant term 1. • Odlyzko & Poonen (1993): If f ( z ) is a Newman polynomial and f ( β ) = 0, then β ∊ A τ , where τ denotes the golden ratio.

  9. Newman Polynomials • Donald Newman. • All coe ffi cients 0 or 1, and constant term 1. • Odlyzko & Poonen (1993): If f ( z ) is a Newman polynomial and f ( β ) = 0, then β ∊ A τ , where τ denotes the golden ratio. • Is there a constant σ so that if M ( f ) < σ then there exists Newman F ( z ) with f ( z ) | F ( z )? • Assume f ( z ) has no positive real roots. • Can we take σ = τ ?

  10. Evidence • Dubickas (2003): Every product of cyclotomic polynomials with no factors of z − 1 divides a Newman polynomial. • Known small limit points are realized by sequences of Newman polynomials. z 2 k ( z + 1) + z k ( z 2 + z + 1) + z + 1 � � → 1 . 25543 . . . M • Known small measures are realized by Newman polynomials.

  11. Degree Measure Newman Half of Coe ffi cients ++000+ 10 1.17628 13 ++++++0+000000000+000000000 18 1.18836 55 +00+0+00000000 14 1.20002 28 +00+0++++ 18 1.20139 19 ++0000000+ 14 1.20261 20 ++++0+00+0+ 22 1.20501 23 +0+000000000000+0 28 1.20795 34 ++0000000 20 1.21282 24 +0+0+000000+0+000 20 1.21499 34 ++0000000 10 1.21639 18 +000++0++++ 20 1.21839 22 +++++0000000++0000000 24 1.21885 42 +00+0+0++0+0+00000 24 1.21905 37 ++++++000+0000000000000 18 1.21944 47 ++000++0000+00000000000 18 1.21972 46 34 1.22028 95 ++++++++++++++0+++++++++000000000+00000000000000

  12. Pisot Numbers • A real algebraic integer β > 1 is a Pisot number (or Pisot-Vijaraghavan number ) if all its conjugates β ´ satisfy | β ´| < 1. • Smallest Pisot number: the real root of z 3 – z – 1, 1.3247… • The set of Pisot numbers is closed! • Smallest limit point: golden ratio, τ . • Boyd (1978, 1985): All Pisot numbers in (1, 2 − δ ] can be identified.

  13. Negative Pisot Numbers • β is a negative Pisot number if – β is a Pisot number. • Identify all negative Pisot numbers > – τ . • Four infinite families, and one sporadic example. • Can we represent all of these using Newman polynomials?

  14. P n ( z ) = z n ( z 2 + z − 1) + 1, n even: n 2 − 1 P n ( z )( z n +1 − 1) = z 2 n +1 + ( z n +2 + 1) X z 2 k . z 2 − 1 k =0 Q n ( z ) = z n ( z 2 + z − 1) − 1, n odd: n − 1 2 Q n ( z ) z 2 − 1 = z n + X z 2 k . k =0 R n ( z ) = z n ( z 2 + z − 1) + z 2 − 1, n > 0: always has a real root in (0, 1).

  15. S n ( z ) = z n ( z 2 + z − 1) − z 2 + 1, n > 0: S n ( z )( z n + 1)( z n +1 − 1) = z 2 − 1 n − 1 n − 5 2 2 z 3 n +1 + z 2 n +1 z 2 k + z n +3 z 2 k + 1 . X X k =0 k =0 G ( z ) = z 6 + 2 z 5 + z 4 − z 2 − z − 1: has a real root in (0, 1). Theorem 1 : If β is a negative Pisot number with β > − τ , and β has no positive real conjugates, then there exists a Newman polynomial F ( z ) with F ( β ) = 0.

  16. Salem Numbers • A Salem number is a real algebraic integer α > 1 whose conjugates all lie on the unit circle, except for 1/ α . • Its minimal polynomial is reciprocal. • Smallest Salem number? • Unknown! Smallest known: 1.17628… . • Salem (1945): If f ( z ) is the minimal polynomial of a Pisot number β , then z m f ( z ) ± f * ( z ) has a Salem number α m as a root, for sufficiently large m , and α m → β as m → ∞ .

  17. Negative Salem Numbers • A negative Salem number is a real algebraic integer α < − 1 whose conjugates all lie on the unit circle, except for 1/ α . • For each negative Pisot number in ( − τ , − 1), apply Salem’s construction to obtain two infinite families of nearby Salem numbers. • Can we represent all of these in ( − τ , − 1) with Newman polynomials?

  18. • For positive integers m and n , define P + m,n ( z ) = z m P n ( z ) + P ∗ n ( z ) , P − m,n ( z ) = z m P n ( z ) − P ∗ n ( z ) , . . . S + m,n ( z ) = z m S n ( z ) + S ∗ n ( z ) , m,n ( z ) = z m S n ( z ) − S ∗ n ( z ) , S − G + m ( z ) = z m G ( z ) + G ∗ ( z ) , m ( z ) = z m G ( z ) − G ∗ ( z ) . G − • Eight doubly-infinite families; two singly-infinite ones.

  19. Method of Investigation • Select one of these families. • Compute many Newman representatives for special values of m and n . • Search for simple rational multiples of the auxiliary factors that arise. • Identify patterns, and establish algebraic identities.

  20. Constructing Newman Multiples • Given f ( z ), determine if there is a Newman polynomial F ( z ) so deg( F ) = N and f ( z ) | F ( z ). • F ( z ) ↔ F (2). • Construct (symmetric) bit sequences of length N + 1 representing integer multiples of f (2). • Fast check for divisibility by f ( − 2). • Construct F ( z ) and check if f ( z ) | F ( z ).

  21. Easy Cases m,n ( z ) P − is Newman in almost all cases of interest. z 2 − 1 m − 2 m,n ( z )( z m − 1 − 1) P + = z 2 m + n − 1 + z n +2 X z 2 k − z m − 1 z 2 − 1 k =0 m − 2 z 2 k − z m + n + 1 . X + z k =0 • Negative terms cancel in all cases of interest.

  22. Hard Cases ++0+0+++++0+++0+++++0+0++ ++0+0+++0000+++++++0000+++0+0++ ++0+0+00+00++0+++++0++00+00+0+0++ ++0+0+++++0+0000+0000+0+++++0+0++ ++0+0+++00++000+++000++00+++0+0++ ++0+0+00+0++0+0+0+0+0+0++0+00+0+0++ ++0+0+++00++000+00+00+000++00+++0+0++ ++0+0+++0000+00+0+++0+00+0000+++0+0++ ++0+0+++0000++00+0+0+00++0000+++0+0++ ++0+0+00+++0+00000+++00000+0+++00+0+0++ ++0+0+00+000000+++0+++0+++000000+00+0+0++ ++0+0+00+00++000+0+0+0+0+000++00+00+0+0++ ++0+0+00+++0+00000+00+00+00000+0+++00+0+0++ 5 , 4 ( z )( z 24 − 1)( z 5 + 1) Q + ( z 8 − 1)( z 6 − 1)( z 2 − 1) ,

  23. Hard Cases • Essentially two cases for Q + m , n : • m odd, n even, n ≥ m – 1: 5 , 4 ( z )( z 24 − 1)( z 5 + 1) 7 , 6 ( z )( z 60 − 1)( z 7 + 1) Q + Q + ( z 8 − 1)( z 6 − 1)( z 2 − 1) , ( z 12 − 1)( z 10 − 1)( z 2 − 1) , 9 , 8 ( z )( z 80 − 1)( z 9 + 1) Q + ( z 16 − 1)( z 10 − 1)( z 2 − 1) . • Suggest: m,m − 1 ( z )( z ab/ 2 − 1)( z m + 1) Q + . ( z a − 1)( z b − 1)( z 2 − 1)

  24. • Leads to: z n +1 + 1 Q + z ( m +2 n +1)( n +2) / 2 − 1 � � � � m,n ( z ) = ( z m +2 n +1 − 1)( z n +2 − 1)( z 2 − 1) ✓ m − 3 n + m − 1 ◆✓ n/ 2 2 2 ◆ z ( z n + 1) X X X z 2 k z k ( m +2 n +1) z k ( n +2) . + k =0 k =0 k =0 • m , n both odd: Q + z ( m + n )( m − 1) / 2 − 1 � � m,n ( z ) ( z m + n − 1)( z m − 1 − 1)( z 2 − 1) m + n ✓ n − 3 ◆✓ m − 3 − 1 2 2 2 ◆ X z k ( m − 1) + z X X z 2 k z k ( m + n ) = . k =0 k =0 k =0

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend