overview and compa risons of long t erm finan ial risk mo
play

Overview and Compa risons of Long-T erm Finanial Risk Mo - PDF document

Overview and Compa risons of Long-T erm Finanial Risk Mo dels Overview and Compa risons of Long-T erm Finanial Risk Mo dels Roger Kaufmann, Pierre P atie R. Kaufmann, P . P atie RiskLab ETH Z urih I Intro


  1. Overview and Compa risons of Long-T erm Finan ial Risk Mo dels Overview and Compa risons of Long-T erm Finan ial Risk Mo dels Roger Kaufmann, Pierre P atie R. Kaufmann, P . P atie RiskLab ETH Z� uri h I Intro du tion I I Mo del Des ription I I I Ba ktesting Idea O tob er 20, 2000 IV Exp e ted Sho rtfall Estimate V Ba ktesting Results http:/ /www.risklab. h/Proje ts.html#SL TFR VI Con lusions http:/ /www.math.ethz. h/ � k aufmann http:/ /www.math.ethz. h/ � patie � 2000 (R. Kaufmann and P . P atie, RiskLab) 1 Aim of the p roje t I Intro du tion � Measurement of long-term �nan ial risk of investment p o rtfolios. � Aim of the p roje t First steps: � Key questions � Mo delling the sto hasti evolution of risk fa to rs asso iated to p o rtfolio p ositions. � Risk measures � T est the go o dness of su h mo dels fo r a long time ho rizon (e.g. 1 y ea r). � 2000 (R. Kaufmann and P . P atie, RiskLab) 2 � 2000 (R. Kaufmann and P . P atie, RiskLab) 3

  2. Risk measure de�nition 60 W e onsider as risk measure the exp e ted sho rt- fall. 40 De�nition 1 The exp e ted sho rtfall ES at a � 20 level � is de�ned b y 1 ( R ) = � E [ R j R � V ( R )℄ ; 2 (�) : ES < aR where R L � � yearly returns in % 0 2 ℄0 ; 1[ , De�nition 2 Given � the value-at-risk VaR(5%) V aR at level � of the returns R with distribu- � tion P , is -20 � f x 2 j � � � g ; V aR ( R ) = inf R P [ R x ℄ � ES(5%) i.e. V aR is the negative of the � -quantile of R . -40 The exp e ted sho rtfall is a risk mea- oherent -60 sure in the sense of Artzner, Delbaen, Eb er and Heath. In general, value-at-risk is not ! P&L distribution � 2000 (R. Kaufmann and P . P atie, RiskLab) 4 � 2000 (R. Kaufmann and P . P atie, RiskLab) 5 Key questions 1. Whi h frequen y do w e use to �t mo dels? � Are long datasets stationa ry? � What a re the statisti al restri tions? I I Mo del Des ription (la k of y ea rly returns) � Ho w an w e k eep as mu h info rmation � Random W alk as p ossible? � GARCH(1,1) 2. Do the p rop erties of �nan ial data hange when w e ho ose another time ho rizon? � Heavy-tailed distribution 3. What is the reliabilit y of the time aggrega- tion rule of ea h mo del if there is any? 4. Ho w an w e ompa re di�erent time ho ri- zons and mo dels? � 2000 (R. Kaufmann and P . P atie, RiskLab) 6 � 2000 (R. Kaufmann and P . P atie, RiskLab) 7

  3. GARCH(1,1) Random W alk Let ( X ; t 2 N ) b e a stri tly stationa ry time t Assumption 1: exp e ted log returns a re equal series rep resenting observations of entered log to zero returns on a �nan ial asset p ri e. [ r ℄ = 0 : E t t +1 Assumption 2: No rmally distributed, inde- A GARCH(1,1) mo del fo r is de�ned b y X p endent log returns with standa rd deviation � = fo r 2 in ea h p erio d [ t; t + 1℄. X � � t N ; t t t 2 2 2 = + + � � � X � � ; 0 1 t � 1 1 t � 1 t iid 2 Ass. 1 & 2 ) s N (0 ; ) : r � 2 t +1 � iid ; E [ � ℄ = 0 ; E [ � ℄ = 1 : t t t ! The loga rithmi asset p ri e follo ws a ran- Stationa rit y onditions: dom w alk with zero drift. 0 1 , � 0, � 0 and + 1 : < � < � � � � < 0 1 1 1 1 Time aggregation: h � 1 X Fit the GARCH(1,1) p ro ess b y pseudo-maximum- iid 2 r := r s N (0 ; h� ) : t � i h;t lik eliho o d estimation to obtain the value of the i =0 pa rameters of the onditional volatilit y . � 2000 (R. Kaufmann and P . P atie, RiskLab) 8 � 2000 (R. Kaufmann and P . P atie, RiskLab) 9 Time aggregation: GARCH o eÆ ients fun - Heavy-tailed distributions tion W e onsider ( r ; t 2 N ) to b e indep endent and Assume: Centered 1-da y log returns follo w X t t identi ally distributed (i.i.d.), rep resenting ob- a GARCH(1,1) p ro ess with a no rmally dis- servations of the log returns on a �nan ial as- tributed innovation. set p ri e. = X � � ; t t t W e assume 2 2 2 = + + � � � X � � ; 0 1 t � 1 1 t � 1 t � � P [ r < � x ℄ = C x L ( x ) as x ! 1 ; (1) iid 1 � s N (0 ; 1) : t + where C ; � 2 R and L is a slo wly va rying fun tion, i.e. Drost-Nijman: L ( tx ) h � 1 8 t 0 : lim = 1 : X > x !1 L ( x ) X : = X is w eak GARCH(1,1): t � i h;t i =0 X = � � ; Distributions satisfying (1) a re alled heavy- h;t h;t h;t sin e the th moment is tailed distributions k 2 2 2 � = � + � X + � � ; h; 0 h; 1 h; 1 h;t h;t � 1 h;t � 1 in�nite fo r � . (1) is also a ha ra terisation k > iid N (0 ; 1) ; � s h;t of the maximum domain of attra tion of the F r e het � distribution. ! 0 ; ! 0 as ! 1 : � � h h; 1 h; 1 � 2000 (R. Kaufmann and P . P atie, RiskLab) 10 � 2000 (R. Kaufmann and P . P atie, RiskLab) 11

  4. Time aggregation F eller's theo rem (1971) ( r 2 N ) Theo rem: Assuming that ; t have heavy- t tailed distributions leads to 2 3 h X � � 4 5 � x = L ( x ) x [1 + o (1)℄ ; ! 1 ; P r < hC fo r x t t =1 where the s ale fa to r C is as in (1) . I I I Ba ktesting Idea P h o rresp onds to the h -da y log returns. r t t =1 � Mo del ompa rison When appli able, this theo rem supplements the entral limit theo rem b y p roviding info rmation on erning the tails. � Ba ktesting des ription Da o rogna, M� uller, Pi tet and de V ries sho w the follo wing theo rem: Supp ose has a �nite va rian e (i.e. 2). r � > A t a onstant risk level p , in reasing the time ho rizon h in reases the V aR and the exp e ted sho rtfall numb ers fo r the heavy tailed mo del 1 b y a fa to r . h � � 2000 (R. Kaufmann and P . P atie, RiskLab) 12 � 2000 (R. Kaufmann and P . P atie, RiskLab) 13 Ba ktesting: T est Des ription Idea: ompa re fo re asted exp e ted sho rtfall Mo del Compa rison d ES with empiri al estimation of exp e ted t;� sho rtfall. No one of the p rop osed mo dels obviously out- p erfo rms the others. Ea h of them has its Measure 1: Evaluate values b elo w the negative de� ien ies. d of the estimated value-at-risk V aR . t;� All mo dels only p erfo rm w ell fo r relatively sho rt W e build the di�eren e b et w een the real (i.e. ob- time ho rizons. W e have to �x a ho rizon h < served) one-y ea r returns and the negative R 1 y ea r, fo r whi h w e an use our mo dels. F o r t +1 d of the estimation ES . the gap b et w een h and 1 y ea r, w e will have to t;� W e al ulate the onditional average of these use a s aling rule. d di�eren es, onditioned on f R � g , < V aR t +1 t;� � � P t d 1 � ( � ES ) 1 R t +1 t;� d t = t 0 f R < � V aR g ES t;� t +1 V = : P 1 scaling rule t 1 1 suitable model t = t d f R < � V aR g 0 t +1 t;� today h 1 year A go o d estimation fo r exp e ted sho rtfall will ES lead to a lo w absolute value of V . 1 � 2000 (R. Kaufmann and P . P atie, RiskLab) 14 � 2000 (R. Kaufmann and P . P atie, RiskLab) 15

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend