ensemble redrawing in strongly nonlinear systems
play

Ensemble redrawing in strongly nonlinear systems Pavel Sakov 1 Marc - PowerPoint PPT Presentation

Ensemble redrawing in strongly nonlinear systems Pavel Sakov 1 Marc Bocquet 2 3 1 Bureau of Meteorology, Melbourne, Australia 2 Universit e Paris-Est, CEREA, Champs-sur-Marne, France 3 INRIA, Paris Rocquencourt research centre, France EnKF


  1. Ensemble redrawing in strongly nonlinear systems Pavel Sakov 1 Marc Bocquet 2 3 1 Bureau of Meteorology, Melbourne, Australia 2 Universit´ e Paris-Est, CEREA, Champs-sur-Marne, France 3 INRIA, Paris Rocquencourt research centre, France EnKF workshop, Bergen 22-24 May 2013

  2. Outline Motivation (strongly nonlinear systems) Example Some details IEnKF IEnKF with ensemble redrawing EnKF solution space and IEnKF solution Algorithm L40 Addendum On ensemble redrawing in large-scale systems Scaled rotations Conclusions

  3. Motivation: an example with 3-variable Lorenz model

  4. Motivation: an example with 3-variable Lorenz model

  5. Example 1: fast convergence

  6. Example 1: fast convergence

  7. Example 1: fast convergence

  8. Example 1: fast convergence

  9. Example 2: Slower convergence

  10. Example 2: Slower convergence

  11. Example 2: Slower convergence

  12. Example 2: Slower convergence

  13. Example 2: Slower convergence

  14. Example 2: Slower convergence

  15. Example 2: Slower convergence

  16. Example 3: Divergence

  17. Example 3: Divergence

  18. Example 3: Divergence

  19. Example 3: Divergence

  20. Example 3: Divergence

  21. Example 3: Divergence

  22. Example 3: Divergence

  23. IEnKS Lag-L smoother observations observations assimilated at assimilated at previous cycles this cycle obs. model states L−1 L L+1 cycle # 0 1 2 3 updated state

  24. IEnKS (Gauss-Newton, transform) x (0) A (0) = E 0 − x (0) = E 0 1 / m , 0 , w = 0 , T = I 0 0 repeat x 0 = x (0) + A (0) 0 w 0 E 0 = x 0 1 T + A (0) 0 T E L = M 0 → L ( E 0 ) Hx = H ( E L ) 1 / m HA = [ H ( E L ) − Hx ] T − 1 ∇ J = ( HA ) T R − 1 ( y − Hx ) / ( m − 1) + [( A (0) 0 ) T A (0) 0 ] † ( A (0) 0 ) T ( x (0) − x 0 ) 0 M = I + ( HA ) T R − 1 HA / ( m − 1) ∆ w = M − 1 ∇ J w = w + ∆ w T = M − 1 / 2 � ∆ w � < ε until E 1 = M 0 → 1 ( E 0 ) inflate E 1

  25. IEnKS (Gauss-Newton, regression) x (0) A (0) = E 0 − x (0) = E 0 1 / m , 0 , w = 0 , T = I 0 0 repeat x 0 = x (0) + A (0) 0 w 0 E 0 = x 0 1 T + A (0) 0 T E L = M 0 → L ( E 0 ) Hx = H ( E L ) 1 / m HM = HA ( A (0) HA = HM A (0) 0 T ) † , HA = [ H ( E L ) − Hx ] , 0 ∇ J = ( HA ) T R − 1 [ y − Hx + HM ( x 0 − x (0) 0 )] / ( m − 1) M = I + ( HA ) T R − 1 HA / ( m − 1) ∆ w = M − 1 ∇ J w = w + ∆ w T = M − 1 / 2 until � ∆ w � < ε E 1 = M 0 → 1 ( E 0 ) inflate E 1

  26. IEnKS (Gauss-Newton, transform, revisited) x (0) A (0) = E 0 − x (0) = E 0 1 / m , 0 , w = 0 , T = I 0 0 repeat x 0 = x (0) + A (0) 0 w 0 E 0 = x 0 1 T + A (0) 0 T E L = M 0 → L ( E 0 ) Hx = H ( E L ) 1 / m HA = [ H ( E L ) − Hx ] T − 1 ∇ J = ( HA ) T R − 1 ( y − Hx ) / ( m − 1) − w (Bocquet and Sakov, 2012) M = I + ( HA ) T R − 1 HA / ( m − 1) ∆ w = M − 1 ∇ J w = w + ∆ w T = M − 1 / 2 until � ∆ w � < ε E 1 = M 0 → 1 ( E 0 ) inflate E 1

  27. IEnKS: two formulations State space formulation: � ( x 0 − x (0) 0 ) T ( P (0) 0 ) − 1 ( x 0 − x (0) x a 0 = arg min 0 ) { x 0 } + [ y L − H L ( x L )] T ( R L ) − 1 [ y L − H L ( x L )] � , x L = M 0 → L ( x 0 ) Ensemble space formulation: w T w + [ y L − H L ( x L )] T ( R L ) − 1 [ y L − H L ( x L )] � � w = arg min , { w } x L = M 0 → L ( x (0) + A (0) 0 w ) 0 (Equivalence - see Hunt et al. 2007)

  28. EnKF solution space and IEnKF solution ◮ Let A be analysed ensemble anomalies in the EnKF A = A U , where U : U T = I , U 1 = 1 is also a KF ◮ Then ˜ solution w T w + [ y L − H L ( x L )] T ( R L ) − 1 [ y L − H L ( x L )] � � w = arg min , { w } x L = M 0 → L ( x (0) + A (0) 0 w ) 0 A ← AU : w + [ y L − H L ( x L )] T ( R L ) − 1 [ y L − H L ( x L )] � w T ˜ � w = arg min ˜ ˜ , { ˜ w } x L = M 0 → L ( x (0) + A (0) 0 ˜ w ) , 0 ˜ where w ≡ Uw Hence the ensemble redrawing can result in: ◮ A slightly different solution due to estimating the sensitivities from an ensemble of finite spread ◮ Convergence to another minimum due to the different initial state of the system

  29. Algorithm IEnKF cycle with redrawing: repeat < iterate > if < diverged > < re-initialise the cycle > < redraw the forecast ensemble > continue end if until < success >

  30. Algorithm Rolling back: repeat < IEnKF cycle with redrawing > if < failed > < go back > < redraw the analysed ensemble > end if until < success >

  31. Performance with L3

  32. IEnKF: performance log

  33. IEnKF vs. IEnKF-N: baseline peformance

  34. IEnKS-N . . . repeat . . . ∇ J = ( HA ) T R − 1 ( y − Hx ) / ( m − 1) − w becomes ∇ J = ( HA ) T R − 1 ( y − Hx ) / ( m − 1) − m w / ( ε N + w T w ) / ( m − 1) . . . until � ∆ w � < ε E 1 = M 0 → 1 ( E 0 ) inflate E 1 becomes c = ε N + w T w M = m ( c I − 2 ww T ) / c 2 / ( m − 1) + ( HA ) T R − 1 HA / ( m − 1) E 0 = x 0 1 T + A (0) 0 M − 1 / 2 E 1 = M 0 → 1 ( E 0 )

  35. Performance with L40 (global)

  36. Performance with L40 (local)

  37. How bad is going local? EnKF IEnKF/R IEnKF IEnKF-N/R

  38. Inflation: prior or posterior?

  39. IEnKF vs. MDA

  40. Scaled rotations Givens rotation: (col. i ) (col. j )  1 0 . . . 0 . . . 0 . . . 0  0 1 . . . 0 . . . 0 . . . 0     0 0 . . . cos( θ ) . . . − sin( θ ) . . . 0 (row i ) ˆ   U ( i , j , θ ) =   0 0 . . . 0 . . . 0 . . . 0     0 0 . . . sin( θ ) . . . cos( θ ) . . . 0 (row j )   0 0 . . . 0 . . . 0 . . . 1 U T = 1 U ˆ ˆ General rotation: m � ˆ U = U ( i , j , θ ij ) i , j =1; i ≥ j Scaled rotation: m � U ( ε ) = U ( i , j , εθ ij ) , ε ∈ [0 , 1] i , j =1; i ≥ j

  41. Conclusions ◮ Ensemble redrawing is a useful option for iterative schemes ◮ Can be particularly useful in strongly nonlinear situations ◮ It can also be useful to handle occasional instabilities ◮ A system rollback is also often required to achieve positive results ◮ The ensemble redrawing can be localised by using scaled ensemble rotations Other results: ◮ IEnKF-N seems to have a better baseline performance in strongly nonlinear situations ◮ Prior inflation seems to work better than the posterior inflation in stronlgy nonlinear situations ◮ MDA can often perform almost equally with the IEnKF Thank you!

  42. References Bocquet, M., 2011: Ensemble Kalman filtering without the intrinsic need for inflation. Nonlinear Proc. Geoph. , 18 , 735–750. Bocquet, M. and P. Sakov, 2012: Combining inflation-free and iterative ensemble Kalman filters for strongly nonlinear systems. Nonlinear Proc. Geoph. , 19 , 383–399. Emerick, A. A. and A. C. Reynolds, 2013: History matching time-lapse seismic data using the ensemble kalman filter with multiple data assimilations. Computat. Geosci. , 16 , 639–659. Gu, Y. and D. S. Oliver, 2007: An iterative ensemble Kalman filter for multiphase fluid flow data assimilation. SPE Journal , 12 , 438–446. Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter. Physica D , 230 , 112–126. Sakov, P., D. S. Oliver, and L. Bertino, 2012: An iterative EnKF for strongly nonlinear systems. Mon. Wea. Rev. , 140 , 1988–2004. Yang, S.-C., E. Kalnay, and B. Hunt, 2012: Handling nonlinearity and non-Gaussianity in the Ensemble Kalman Filter: Experiments with the three-variable Lorenz model. Mon. Wea. Rev. , 140 , 2628–2646.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend