enhanced thermoelectricity enhanced thermoelectricity
play

Enhanced thermoelectricity Enhanced thermoelectricity in the - PowerPoint PPT Presentation

Enhanced thermoelectricity Enhanced thermoelectricity in the correlated semiconductor FeSb 2 Peijie SUN Max Planck Institute for Chemical Physics of Solids Dresden, Germany Acknowledgement: N. Oeschler, F. Steglich (MPI, Dresden) S Johnsen B


  1. Enhanced thermoelectricity Enhanced thermoelectricity in the correlated semiconductor FeSb 2 Peijie SUN Max Planck Institute for Chemical Physics of Solids Dresden, Germany Acknowledgement: N. Oeschler, F. Steglich (MPI, Dresden) S Johnsen B B Iversen (Aarhus Univ Denmark) S. Johnsen, B.B. Iversen (Aarhus Univ., Denmark) 1

  2. O tline Outline • Introduction to FeSb 2 -- A probable new d - based correlated semiconductor • Findings of colossal thermoelectricity in FeSb 2 • New detailed measurements and analyses New detailed measurements and analyses (Thermopower, Nernst effect…) • Comparison to non-correlated RuSb • Comparison to non-correlated RuSb 2 • Summary 2

  3. Crystal structure & Gap opening • Marcasite-type orthorhombic structure • Fe surrounded by deformed Sb octahedra. 3 J. B. Goodenough, J. Solid State Chem. 5 (1972) 144 Hulliger, Nature, 198 (1963) 1081; J. Solid State Chem. 5 (1972) 144

  4. Thermodynamics similar to FeSi FeSb 2 FeSi Mandrus, PRB 1995 Thermally activated paramagnetism, (narrow gap and narrow band model applicable) FeSb FeSb 2 FeSb 2 E g ~ 350 K 4 Optical spectral weight recovers above 1eV Perucchi, Eur. Phys. J. B., 2006 Petrovic, PRB 72 (2005) 045103; Fan et al, J. Solid State Chem. 5 (1972) 136

  5. Colossal S and PF in FeSb 2 Largest S in d based systems Largest S in d -based systems, largest PF so far known largest PF so far known Dimensionless figure of merit ZT = T S 2 σ / к • Origin of the huge S and PF ? Large power factor PF = S 2 σ Large power factor PF S σ • Reducing к while keeping high PF ? Reducing к while keeping high PF ? Small thermal conductivity к 5 A. Bentien et al, EPL 80 (2007)17008

  6. Experimental FeSb 2 Samples preparation Vapor transport (FeSb 2 ), self-flux (RuSb 2 ) Vapor transport (FeSb 2 ), self flux (RuSb 2 ) Crystal characterization Powder x-ray, Laue diffraction Home-made cryostat (1.5K-RT, 0-7T) Thermopower, S = V x /| ∆ T | N Nernst coeffi., v = (L/W) · V y / B | ∆ T | t ffi (L/W) V / B | ∆ T | 6

  7. Resistivity & Hall effect Resistivity & Hall effect 2 -3 10 10 10 10 -3 3 1 1 10 10 10 10 -4 10 0 10 -5 10 0 -5 10 10 10 10 3 /C) ) ρ (Ω cm ) ρ ( Ω -cm) RH| (m3/C) -1 10 -6 10 R H | (m -7 10 -2 10 -2 -7 10 10 10 10 ρ |R ρ |R -8 10 -3 10 -9 10 -4 -9 10 10 10 10 -10 -4 10 10 10 10 0.0 0.1 0.2 400 1 10 100 -1 (K -1 ) T T (K) D Double gap, E g = 52 K and 350 K ( ρ = ρ 0 exp ( E g /2 T )) bl E 52 K d 350 K ( ( E /2 T )) 7

  8. One band model analysis One band model analysis Mobility (| R H |/ ρ ) 0 10 -1 10 2 /Vs) -2 10 m µ H (m -3 3 10 -4 10 -5 10 1 10 100 T (K) negligibly small mobility of a second sub-band � One band analysis possible 8

  9. Thermopower & Nernst coefficient p Large power factor Large power factor 0 0 0 0 -2 700 -200 600 600 (mV/K) -4 4 ν ( µ V/KT) 500 2 ) ( µ W/cmK -6 400 -400 300 ν S -8 PF 200 FeSb2 100 -10 -600 N(T), B = 0.5 T 0 N(T), B = 2 T 0 0 10 10 20 20 30 30 40 40 50 50 60 60 70 70 80 80 -12 T (K) 1 10 100 T (K) • S ~ 10000 µV/K (10 K) >> Classical Upper limit of semiconductor E g /2 eT max ~ 1500 µV/K • v ~ 550 µV/KT (7.5 K), 20 µV/KT (50 K), reflecting double gap feature . 9

  10. Thermal activation of S at low T 20 K 20 K 10 K 10 K 6 6 K 6.6 K 12 S ( T ) = k B /e · E g /2 T + C (1) mV/K ) ) 8 Thermal activation of S , in agreement with T -activated ρ |S| (m and R H in this T -range. g H 4 However, E g ~ 840 K g >> 52 K (from ρ and R H ) 0 0.15 0.1 0 0 0.05 0.05 1/T (1/K) 10

  11. Electron-diffusion contributions in degenerate g and nondegenerate regimes Non-degenerate model (2) Degenerate model (3) 11

  12. Electron-diffusion effect qualitatively interprets S 1 10 (a) (a) 15 x (3) 30 x (2) 0 K ) 10 S| (mV/ (3) (2) -1 1 |S 10 10 m *= m 0 -2 10 100 1 10 T (K) � A factor is needed to optimize the description quantitatively. Enhanced electron-diffusion contribution ? Enhanced electron diffusion contribution ? 12

  13. Fermi energy gy FeSb 2 100 E F (K) 10 10 E 1 1 10 100 T (K) ( ) � The measuremental temperatures are not very different with E F 13

  14. Results of a different batch 100000 FeSb 2 AAFa-batch 10000 ( µ V/K) 1000 |S| ( 100 S measured deg. model m*=0.1m 0 factor 25 non-deg. model m*=0.1m 0 factor 40 10 10 100 T (K) T (K) Assuming m * = 0.1 m 0 , the same discussion works. 14

  15. Qualitatively interpreting Nernst signal Two origin of Nernst signal 4 10 (b) (b) Metal/degenerate semicond. M t l/d t i d 3 10 -- large ∂ τ / ∂ E S tan θ H /B /KT) 2 10 | ν | ( µ V/ 1 10 0 10 10 N (B=0.5T) N (B= 2T) -1 10 1 10 100 Intrinsic/compensated semicond. T (K) T (K) -- ambipolar effect (positive signal) bi l ff t ( iti i l) Huge Nernst signal for the first mechanism! Enhanced ∂ τ / ∂ E accompanying onset of the gaps probably account for the double peaks Delves, Rep. Prog. Phys. 1965 Wang, et al, PRB 2001 15

  16. Thermal conductivity & mean free path 3 400 10 3/2 ∼ T 2 10 10 300 1 10 µ m) mK) l p , l e ( µ κ (W/m l P 0 200 10 -1 10 10 κ l e 100 -2 10 -3 3 0 10 10 100 4 T (K) � Extremely small electron mfp compared to that of phonon indicates large room for optimizing ZT g p g 16

  17. Comparing FeSb 2 and RuSb 2 Comparing FeSb 2 and RuSb 2 6 4 ol) emu/mo FeSb 2 2 -4 e ( 10 0 RuSb 2 R Sb χ ( -2 -2 0 100 200 300 400 T (K) Magnetic susceptibility 17

  18. Comparing FeSb 2 and RuSb 2 Comparing FeSb 2 and RuSb 2 2 10 10000 FeSb 2 FeSb 2 1000 1 10 K) m) |S| (mV/K F ( µ W/K2cm 100 RuSb 2 0 10 10 PF RuSb 2 -1 10 1 -2 10 10 300 1 10 100 0.1 0 10 20 30 40 50 60 T (K) T (K) Huge S and PF below 30 K in FeSb 2 relative to RuSb 2 , despite the similar n and even larger к of the latter 18

  19. Similar case in 2D-SrTiO 3 ---- an enhanced S - log n slope ---- an enhanced S - log n slope When T = Const. S ( T ) ~ ± k /e · (ln n + C ) S ( T ) ~ ± k B /e · (ln n + C ) A five fold enhanced slope in 2D system, relevance to FeSb 2 ? Ohta et al, Nature material 2007 19

  20. Summary Summary � Huge S and PF are observed in FeSb 2 , while low values in RuSb 2 . � Classical electron-diffusion model qualitatively describes the observed S . � An enhancing factor is needed for quantitative explanations. � Large mobility contributes to the large PF as well. 20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend