in a thermoelectric quantum dot
play

IN A THERMOELECTRIC QUANTUM DOT A. Crpieux F. Michelini Marseille, - PowerPoint PPT Presentation

HEAT AND CHARGE CURRENT FLUCTUATIONS IN A THERMOELECTRIC QUANTUM DOT A. Crpieux F. Michelini Marseille, France THERMOELECTRICITY Seebeck effect Peltier effect Thomson effect 1821 1834 1851 ELECTRICITY HEAT APPLICATION


  1. HEAT AND CHARGE CURRENT FLUCTUATIONS IN A THERMOELECTRIC QUANTUM DOT A. Crépieux F. Michelini Marseille, France

  2. THERMOELECTRICITY Seebeck effect Peltier effect Thomson effect 1821 1834 1851 ELECTRICITY ↔ HEAT

  3. APPLICATION Thermocouple Cool water fountain Thermoelectric generator   6 %

  4. APPLICATION   2 %

  5. APPLICATION

  6. FIGURE OF MERIT HER EREM EMANS et et al al. Nature Nan anotechnologies 8, 471 471 (2013 2013) → New fields of research : Nanothermoelectricity / Quantum Thermoelectricity

  7. LINEAR RESPONSE         Onsager relation V J I G SG V            S       Charge current    ~ T I     T 0 S         J G T I 0 T 0 ~  Heat current    2 S T G 0 Wiedemann-Franz law   1 ZT 1 2   2 2    S GT k 0 ZT   B 0 max C   0  2 1 ZT 1 GT 3 e 0 0 OUTSIDE THE LINEAR RESPONSE        I G SG V              The figure of merit is no longer ~          J G T the adequate quantity to quantify thermoelectricity   1 ZT 1    0 max C   1 ZT 1 0

  8. QUESTION Can noise quantifies the thermoelectric conversion ?

  9. MIXED NOISE      dt  ˆ ˆ    I J S I 0 J t pq p q   CHARGE CURRENT HEAT CURRENT         ˆ ˆ ˆ ˆ ˆ ˆ       I t I t I J t J t J p p p p p p    ˆ          I t e N ˆ ˆ ˆ   p E p p J t I t I t p p p e    dQ dE dN p p p p G R  R , T R G L e 0  L , T L I I R L J J L R

  10. VERY FEW STUDIES ON MIXED NOISE France cesco sco Giaz azot otto, , Tero T. Heikkil ilä, , Arttu Luukanen, Alexan ander r M. Savin, and Jukka Jukka P . Pekola

  11. SYSTEM G R  R , T R G L e 0  L , T L I I R L J J L R          e  e  e   H c c c c d d V c d h . c . k k k k k k 0 k k                    k L k R  p  L , R  k  p       reservoir L reservoir R dot dot reservoir transfer METHOD AND ASSUMPTIONS  Mixed noise expressed in terms of two-particles Keldysh Green’s functions  Non- interacting system → Wick’s theorem  Dyson equation of motion for the dot Green’s function  Fourier transform  Wide-band approximation

  12. RESULTS LANDAUER-LIKE EXPRESSIONS   e              f Fermi Dirac distributi on function e e e  e e T L, R I d f f   L L R   e  h T transmissi on coefficien t              1 e e   e  e e T J d f f BUTCHER, JPCM 2, 2, 48 4869 69 (19 (1990 90) L L L R   h ZERO-FREQUENCY NOISES 2 e       e d e I I S F Charge noise pq   h      e    e   e e I J S F d Mixed noise pq q   h       1     e   e   e e J J S F d Heat noise pq p q   h                               e  e e  e  e  e  e  e e  e 2 T T T F f 1 f f 1 f 1 f f L L R R L R

  13.  Conservation rules  Mixed noise at equilibrium  Mixed noise far from equilibrium

  14. CONSERVATION RULES NUMBER OF ELECTRONS IS CONSERVED ˆ ˆ        N N Cste I I 0 I I I L T L R L R L TOTAL HEAT IS NOT CONSERVED Contact resistance dissipation ˆ ˆ      Q Q Cste J J 0 L R L R   J J J R L L POWER CONSERVATION ˆ ˆ    th  el J J V I P P L R R TOTAL CHARGE AND MIXED NOISES       I I I J J I S S S 0 pq pq pq p , q p , q p , q POWER FLUCTUATIONS CONSERVATION           dt   ˆ ˆ  ˆ ˆ   th th  el el J J 2 I I S S V P t P 0 dt P t P 0 pq LL     p , q

  15. AT EQUILIBRIUM (linear response) RELATIONS BETWEEN NOISES AND CONDUCTANCES G = electrical conductance  I I S 2 k T G pp B 0 S = Seebeck coefficient     = thermal conductance I J J I 2 S S 2 k T SG ~  pp pp B 0    2 S T G T 0 = average temperature ~ 0   J J 2 S 2 k T pp B 0 → Fluctuation -Dissipation Theorem applies for any kind of noises KUBO et al., J. Phys. Soc. Jpn. 12, 1203 (1957) FIGURE OF MERIT   2 I J Independent of p and q 2 S S T G   pq 0 ZT    0 2  I I J J I J S S S CREPIEUX / MICHELINI, JPCM 27, 015302 (2015) pq pq pq

  16. FAR FROM EQUILIBRIUM   e  T SCHOTTKY REGIME 1 NOISES    I I S C e I e   e       LR R C coth 1 when T 0 0 R 0 L     e   I J L , R 2 k T 2 k T S C e J C I B R B L LR R 0 R R    e   J J S C J → Noises are proportional to currents LR 0 L R EFFICIENCY th I J J J P J I I S S S I J S       R  LR LR LR eV I R LR J R el V I e C I C J C P e C R L R EQUIVALENTLY   2 Does not depend on C I J S   LR   2  → Thermoelectric efficiency can be written as a ratio of noises I J I I J J S S S LR LR LR CREPIEUX / MICHELINI, JPCM 27, 015302 (2015)

  17. NUMERICAL TEST AUTO-RATIO CROSS-RATIO EFFICIENCY e  k T / 0 B 0 e  k T / 0 . 001 B 0 0 → The efficiency fits with the cross-ratio ! It has no relation with the auto-ratio

  18. CONCLUSION      dt  ˆ ˆ    I J S MIXED NOISE I 0 J t pq p q   allows to quantify thermoelectric conversion   2 I J S  In the linear response regime pq ZT   0  2 I I J J I J S S S pq pq pq   2 I J S   LR   In the Schottky regime 2  I J I I J J S S S LR LR LR

  19. OPEN PROBLEMS  Coulomb interactions, phonons  Mixed noise for ac-driven  Efficiency fluctuations  Mixed noise in a 3-terminals thermoelectric systems  Measurement of mixed noise WHITNEY, PRB RB 91 91, , 11 1154 5425 25 (20 (2015 15)

  20. Thank you for your attention !

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend