dataman
play

DATAMAN MOBILE COMPUTING LABORATORY VOR Base Stations for Indoor - PowerPoint PPT Presentation

DATAMAN MOBILE COMPUTING LABORATORY VOR Base Stations for Indoor 802.11 Positioning Dragos Niculescu and Badri Nath { dnicules,badri } @cs.rutgers.edu indoor positioning existing systems require either: extra infrastructure + good


  1. DATAMAN MOBILE COMPUTING LABORATORY VOR Base Stations for Indoor 802.11 Positioning Dragos ¸ Niculescu and Badri Nath { dnicules,badri } @cs.rutgers.edu

  2. ☞ indoor positioning existing systems require either: ❍ extra infrastructure + good accuracy - instrumentation - specialized beacons, badges - LOS ❍ signal strength (SS) map + existing 802.11 base stations - map depends on people, furniture, ... - centralized database Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  3. signal strength map (example) ☞ 25m (0,0) 56m = basestations = sample point RADAR project (Microsoft) 1. build SS map: ❍ for each point, measure SS to all 5 BS 2. query: ❍ measure SS to 5 BS ⇒ best match in the map Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  4. ☞ VORBA - VOR BAse stations goals: ❍ no signal strength map ❍ less infrastructure ❍ move complexity to the 802.11 base station ❍ use: − angles − ranges − angles and ranges Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  5. ☞ VORBA prototype 90° 120° 60° IR receiver IR sender IR sender 150° 30° antenna 0° − −4 4 0− 0− 3 3 0 0 − − 2 2 0 0 − − 1 1 0 0 − − 3 0 3 0 180° 802.11 card 802.11 card 330° 210° 300° 240° 270° prototype base station directional antenna pattern Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  6. ☞ basic idea −62 π −64 2 signal strength [dBm] −66 −68 mean SS π 2 π −70 −72 −74 3 π 2 −76 −78 π 3 π 2 π π 2 2 signal strength variation = SS ( α ) � angle � peak → angle 1 . SS ( α ) 2 . 3 . and / or → position mean → range range Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  7. ☞ experiments ❍ 32 measurement points ❍ 5 + 2 base stations ❍ N/E/S/W measurements of 3-4 revolutions each Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  8. ☞ angles only positioning 1 cumulative probability 0.75 0.5 0.25 using best angle using first two angles 0 0 2 4 6 8 10 12 14 16 error in meters ❍ 3.5m median position error ❍ 3m if we knew the best peak Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  9. ☞ quantized angles −500 0 500 1000 1500 2000 2500 −500 0 500 1000 1500 2000 2500 1500 1500 1400 1400 1200 1200 1000 1000 1000 1000 552x908 + o 552x908 o 1650x794 + + + + 800 800 + + 1650x794 + + 600 600 500 500 400 400 814x358 814x358 200 200 218x178 218x178 + 1776x130 1776x130 0 0 0 0 −200 −200 −400 −400 −500 −500 −400 −200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 −400 −200 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 ❍ measurements rounded to the nearest 45 ◦ ❍ simulation ❍ little degradation for 45 ◦ and 22 . 5 ◦ quantizations Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  10. ☞ angles & ranges σ r σ y σ a σ x A M r ❍ angle error σ a = 0 . 4 radians ≃ 21 ◦ ❍ range error σ r = 0 . 2 r ❍ approximate uncertainty as an ellipse ❍ error ellipse increases with distance Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  11. ☞ angles & ranges uncertainty how to combine several readings? Kalman filter . BS 1 α 1 ρ 1 BS 3 BS 2 Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  12. ☞ angles & ranges positioning 1 cumulative probability 0.75 0.5 0.25 7 BS 5 BS 3 BS 1 BS 0 0 16 4 8 10 12 2 6 14 error in meters ❍ more base stations ⇒ better positions ❍ 2.1m median position error (all 7 BS) Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  13. ☞ summary ❍ VORBA = VOR base station ❍ complexity into the base station − less infrastructure − no SS map ❍ revolving basestation measures SS ( α ) to derive − discrete angles − angle distributions − ranges ❍ works with quantized angles as well ❍ can achieve 2.1m - 4m median error Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  14. ☞ index ❍ indoor positioning ❍ angles only positioning − angulation/lateration − discrete angles − SS map example − quantized angles ❍ VOR BAse station ❍ angles and ranges − prototype − uncertainty − basic idea − performance − experiment setup ❍ summary Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  15. ☞ trilateration N N N β B A γ α C M ( x M − x A ) 2 + ( y M − y A ) 2 = MA 2 ( x M − x B ) 2 + ( y M − y B ) 2 = MB 2 solve for ( x M , y M ) ( x M − x C ) 2 + ( y M − y C ) 2 = MC 2 ❍ MA, MB, MC are affected by errors ❍ several methods available Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  16. ☞ triangulation N N N β B A γ α C M ( x M − x A ) sin α = ( y M − y A ) cos α solve for ( x M , y M ) ( x M − x B ) sin β = ( y M − y B ) cos β ( x M − x C ) sin γ = ( y M − y C ) cos γ ❍ α, β, γ -affected by errors (Gaussian) ❍ several methods available Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  17. ☞ ranges and angles N N N β B A γ α C M x M = x A + MA cos α = x B + MB cos β = x C + MC cos γ y M = y A + MA sin α = y B + MB sin β = y C + MC sin γ ❍ one base station is theoretically enough ❍ α, β, γ, MA, MB, MC - affected by errors Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  18. ☞ best peak distribution 0.6 0.6 histogram of number of peaks Histogram of SS rank mean = 4.5 peaks of best peak probability 60% 30% 0 1 2 3 4 5 6 7 8 −1 0 1 2 3 4 5 6 7 8 peak rank number of peaks ❍ 4.5 peaks on average ❍ best peak is first/second 90% of the time Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  19. ☞ other peak distribution true direction true direction π − π 4 4 15% 33% − π π π − π − π π 2 2 4 4 ❍ other peaks point away from true direction Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  20. ☞ triangulation analysis 0.02 0.02 0.002 Var[x] Var[x] Var[x] 0.01 0.001 0.01 simulation simulation simulation lower bound lower bound lower bound 0 0 0 0 0.6 1.2 1.8 2.4 3 3.6 4.2 4.8 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1 σ 2 1 a R λ ln Rm σ 2 a V ar [ x ] > λπ ln R R m ❍ V ar [ x ] - standard dev. of positioning error ❍ λ - density of basestations / m 2 ❍ to improve positioning: 1. decrease measurement error σ a 2. use more basestations Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  21. ☞ angle distribution Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  22. ☞ quantized angles 1 cumulative probability 0.75 0.5 0.25 best angle (non quantized) quantization 45 quantization 22.5 quantization 90 0 14 0 2 4 6 8 10 12 error in meters ❍ little degradation for − 16 directions ( 22 . 5 ◦ ) − 8 directions ( 45 ◦ ) Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  23. ☞ range inference ❍ open space attenuation: SS [ dBm ] = SS 0 [ dBm ] − log 10 ( d d 0 ) n ❍ d ( SS ) − obtained through fitting − known to be unreliable ❍ we obtain it from integration of SS ( α ) ❍ 5-fold cross validation − corridor basestations - waveguide effect − median range error 2.8m Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  24. ☞ positioning w. ranges 1 cumulative probability 0.75 0.5 0.25 0 14 0 2 8 10 12 4 6 error in meters ❍ trilateration 5 base stations ❍ median position error 4.5m Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

  25. ☞ discussion ❍ triangulation with large outliers ❍ use more than two angles? ❍ no correlation between − angle error and distance − angle error and SS ❍ corridors ⇒ waveguides ❍ revolving signal at the mobile? ❍ data performance? Dragos ¸ Niculescu – VOR Base Stations for Indoor 802.11 Positioning

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend