energy geotechnology
play

ENERGY GEOTECHNOLOGY Mixed Fluid Conditions J. Carlos Santamarina - PowerPoint PPT Presentation

UNSAT 2010 - Barcelona ENERGY GEOTECHNOLOGY Mixed Fluid Conditions J. Carlos Santamarina and Jaewon Jang energy geotechnology Energy in the News Deepwater Horizon Explosion: 4/20/10 (@10 pm) Oil slick: 5/6/10 Sinks: 4/22/10 (~10 am) Energy and


  1. UNSAT 2010 - Barcelona ENERGY GEOTECHNOLOGY Mixed Fluid Conditions J. Carlos Santamarina and Jaewon Jang

  2. energy geotechnology

  3. Energy in the News Deepwater Horizon Explosion: 4/20/10 (@10 pm) Oil slick: 5/6/10 Sinks: 4/22/10 (~10 am)

  4. Energy and Life (Global: 2008) 1.0 Human Development Index 0.8 0.6 0.4 0.2 0.0 0.01 0.10 1.00 10.00 Total power per person [kW/person] CIA, UN, EIA

  5. Energy and Life (Global: 2008 – BRIC trends: 1980-2007) 1.0 1 billion USA Human Development Index 0.8 Russia Brazil 0.6 China India 0.4 0.2 0.0 0.01 0.10 1.00 10.00 Total power per person [kW/person] CIA, UN, EIA Countries following the same trend: P   HDI 

  6. Sources – Case: USA 2008 LLNL – DOE Units: [QUADS] Efficiency in geotechnology? crushing<5% tunneling<< ants!

  7. Geo-Centered Perspective: Time Scale 4.5 B 4 By 3 By 2 By 1 By 0

  8. 4.5 B 4 By 3.5 BYA: bacteria 3 By 2.5 BYA: O 2 atmosph 2 By 1.5 BYA: plants 1 By coal & petrol 230-65 MYA: dinosaurs 0

  9. 4.5 B 4 By 3 By 2 By 1 By 0 10 My 8 My 6 My 4 My 2 My 0 My

  10. 4.5 B 4 By 3 By 2 By 1 By 0 10 My 8 My 6 My 4 My 2 My 0 My 380 Fedorov et al 2006 CO 2 300 220 8 o C T 400k 300k 200k 100k 0k

  11. 4.5 B 4 By 3 By 2 By 1 By 0 10 My 8 My 6 My 4 My 2 My 0 My -6000 yr -4000 yr -2000 yr 0 2000 yr History of fossil fuels: a  -function

  12. 2050 2.5 2 500 1.5 CO 2 (ppm) 400 Temp anomaly ( o C) 1 0.5 300 0 200 -0.5 1000 1200 1400 1600 1800 2000 Year -6000 yr -4000 yr -2000 yr 0 2000 yr Global implications

  13. Geo-Centered Perspective: Spatial Scale CO 2 C Fossil Fuel: ~90%

  14. Energy Geotechnology FOSSIL FUELS (C-BASED) RENEWABLE Nuclear Wind Solar Biofuels Petroleum Gas Coal Geo-T Tidal • fines & clogging • sand production • gas hydrates • engineered soils • shale instability • gas storage • characterization • periodic load • decommission • EOR • low-T LNG found. • optimal extraction • ratcheting • leak detect • heavy oil & tar sand • subsurface conv. • leak repair • mixed fluid flow, percolation • contact angle & surface tension = f(u a ) GEOLOGICAL STORAGE CO 2 sequestration Energy Storage Waste storage 10 4 -10 5 yr BTHCM CAES, phase-change mineral dissolution  shear faults, pipes Cyclic HTCM 10 5 yr BTHCM GEO-ENVIRONMENTAL REMEDIATION CONSERVATION  Hydro-electric : capacity almost saturated

  15. Energy Geotechnology: Phases Gas water vapor CO 2 CH 4 supercritical CO 2 Liquid water CO 2 oil Solid mineral ice CO 2 hydrate CH 4 hydrate

  16. Summary: Energy Geotechnology Current development patterns: HDI  Energy Quality of life 15.6 TW – increasing at ~1% per year Current Fossil fuels Stored solar energy (1 billion years in the making) C-Economy: ~300 years Short-term: C-emissions  Climate (global) Fossil fuels more sustainable … but… CO 2 storage Energy resource recovery production Geotechnology energy storage waste storage efficiency Wide range of multi-phase conditions

  17. CH 4 hydrates

  18. Hydrates (clathrate = cage) H 2 O CH 4

  19. Methane Hydrate 10 8 Fluid Pressure [MPa] 6 4 2 0 265 270 275 280 285 290 Temperature [K]

  20. Methane Hydrate 10 8 Fluid Pressure [MPa] 6 H+I H+W H+G H+G 4 I+G 2 W+G I+G 0 265 270 275 280 285 290 Temperature [K]

  21. Methane Hydrate 10 8 Fluid Pressure [MPa] 6 H+W I+G H+G 4 2 W+G I+G 0 265 270 275 280 285 290 Temperature [K]

  22. Methane Hydrate 10 8 Fluid Pressure [MPa] 6 H+I H+W H+G H+G 4 2 W+G I+G 0 265 270 275 280 285 290 Temperature [K]

  23. Methane Hydrate - Occurrence (Kvenvolden and Lorenson, 2001)

  24. Hydrate – Key Observations CH 4 solubility in H 2 O CH 4 : 750 H 2 O CH4 concentration in hydrate CH 4 : 6 H 2 O formation: CH 4 diffusion ~1 x 10 -9 m 2 /s Diffusivity CH 4 in water ~5 x 10 -13 m 2 /s hydrate Ice  water V w / V ice =0.92 production Hydrate  (water+CH 4 gas ) V w+g / V hyd = 1 to >6

  25. Fluid Volume Expansion  V V   W G V hy d 50 Nankai Trouph 40 β=1.3 30 Blake Ridge P [MPa] 1.4 Gulf of Mexico 1.5 20 Cascadia 2 India 10 Hydrate Ridge 3 Mallik 4 Mt.Elbert 5 6 0 272.15 277.15 282.15 287.15 292.15 297.15 302.15 Temp [K]

  26. a:  ’ c =0.03 MPa b:  ’ c =0.5 MPa Hydrate-bearing Sediments c:  ’ c =1 MPa Sand Kaolinite 20 100% c c 6 b 100% b 15  dev [MPa] a  dev [MPa] a 4 10 50% c 2 b 50% c 5 a b c 0% c a 0% b b a a 0 0 0 5 10 0 5 10 Axial strain [%] Axial strain [%] all THCEM properties = non lineal functions of S hyd

  27. Summary: Methane Hydrates Relevance: C-reserves climate change instability Formation PT history dependent S hyd is CH 4 -limited (typically) Multi-phase Hydrate Water Gas Ice Mineral (not all at once) Pore habit Patchy (coarse grained sediments) Lenses (fine grained sediments) THCEM properties Non linear functions of S hyd Gas Production Endothermic (may be heat-limited) Very large volume expansion Production from sands? from clayey sediments?

  28. CO 2 geo-storage

  29. Geological Storage of CO 2 z=0.7~3.5 km z=1.7~4.5 km z=0.5~3.7 km z=0.3~1.1 km z=0.3~0.8 km Cap rock Coal seams Hydrate Stability Z Cap rock Cap rock Deep Saline Aquifer Cap rock Oil Reservoir Depleted Hydro- Carbon Reservoir

  30. CO 2 Properties 1000 1000 Supercritical CO 2 Supercritical CO 2 supercritical CO 2 100 100 Pressure [MPa] Pressure [MPa] CO 2 Liquid CO 2 Liquid CO 2 Solid CO 2 Solid 10 10 1 1 CO 2 CO 2 Cap rock Hydrate Hydrate CO 2 Gas CO 2 Gas 0.1 0.1 -100 -100 -60 -60 -20 -20 20 20 60 60 100 100 140 140 Temperature [°C] Temperature [°C]

  31. Water and Liquid CO 2 Properties Property [units] CO 2 liquid H 2 O liquid [kJ·kg -1 ·K -1 ] Heat capacity c p 2.3 4.2 Thermal cond.  [W·m -1 ·K -1 ] ~0.13 0.56 Thermal Diff.  [m 2 s -1 ] 6.1×10 -8 1.3×10 -7 Viscosity μ (2-to-8)×10 -5 ~1.5×10 -3 [Pa·s] Density ρ [kg·m -3 ] ~938-to-800 1003 Bulk Modulus [GPa] 0.1-to-0.3 2.1-to-2.3 V P [m/s] ~400-to-600 1450-to-1520 Electrical cond. [S/m] < 0.01 f(c) - seawater: ~5 Dielectric permit. [ ] ~ 1.5 ~79

  32. Diffusion of CO 2 in H 2 O Water diffusion into liquid CO 2 : D~10 -7 m 2 /s

  33. Solubility of CO 2 in Water - pH 1.4 1.4 in 1 mol NaCl solution T= 30  C 1.2 1.2 Solubility of CO 2 [mol/L] Dissolved CO 2 [mol/L] 60  C 1.0 1 90  C 120  C 0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0.0 0 3.0 3.5 4.0 4.5 0 5 10 15 20 Fluid pressure [MPa] pH (1) change in surface charge  change in fabric (2) mineral dissolution

  34. pH and Minerals Surface charge [C/m 2 ] Stumm, 1992 0.2 0.1  change in fabric 0 2 4 6 8 10 12 pH Gidigasu, 1976 TiO 2 CaCO 3 Mg(OH) 2 Solubility [mmol/L] Fe(OH) 2 Ca(OH) 2 Fe(OH) 3 Ti(OH) 4 Al 2 O 3 Al 2 O 3 SiO 2  mineral dissolution pH

  35. Summary: CO 2 Geological Storage More sustainable use of fossil fuels PT: typically in supercritical regime  low viscosity  invasion pattern? Liquid CO 2  low B,  ’,  el  geophysical monitoring Acidifies water  surface charge (+)  clay fabric in shale cap rock?  mineral dissolution  stress field? permeability?

  36. interfaces

  37. Surface Tension BBC News In pictures Visions of Science.jpg

  38. CO 2 -H 2 O: Interfacial Interaction Low P High P (1) mutual diffusion of CO 2 -H 2 O (2) interfacial tension=f(P)

  39. Surface Tension and Contact Angle Water droplet in CO 2 gas CO 2 liquid

  40. Surface Tension = f(P) CO 2 L-V boundary 100 at 295 K at 298 K H 2 O-CO 2 Interfacial tension  [mN/m] Gaseous CO 2 Liquid CO 2 80 60 40 20 0 0 5 10 15 20 Pressure [MPa]

  41. Interfacial Tension water and … liq CO 2 oil CH 4 gas 30 34-46 64 [mN/m] 30 40 50 60 70 31  1 72 Ice water vapor hyd gas CH 4 CO 2 hyd CO 2 Increasing pressure Liquids Gasses Solids or density

  42.    q  VS LS cos  Contact Angle LV Non-wetting droplet Wetting droplet  LV  LV q  VS  LS  VS  LS q Mineral Mineral  LV ↓ → θ ↑  LV ↓ → θ ↓

  43.    q  VS LS cos  Contact Angle = f(P gas ) LV

  44. Other Effects - Surfactants Pulmonary self-regulation: 30 mN/m Surface tension Air Alveola size hydrophobic hydrophilic Surfactant  Surface tension = f(pore size)  S-u data interpretation

  45. Capillary Pressure - Laplace        q 2 P P R 2 R cos nw w  P P 2 2R   q nw w P cos R    1 M       q P R T ln R 2 cos     LV M  h  1    r R T ln    h   2 r   q P cos R 1     q     R 2 cos P T T     m m wi T T m m Characteristic curves  u-S for: water -gas water-oil gas-oil water-ice water-hydrate

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend