electroweak radiation in antenna showers
play

Electroweak Radiation in Antenna Showers Rob Verheyen With Ronald - PowerPoint PPT Presentation

Electroweak Radiation in Antenna Showers Rob Verheyen With Ronald Kleiss Introduction t cut QCD t hard 2 Introduction Parton Showers = Resummation Photon Emission Soft and collinear logarithms Current implementations: only collinear


  1. Electroweak Radiation in Antenna Showers Rob Verheyen With Ronald Kleiss

  2. Introduction t cut Λ QCD t hard 2

  3. Introduction Parton Showers = Resummation Photon Emission Soft and collinear logarithms Current implementations: only collinear Photon Splitting Only collinear logarithms Cast in antenna formalism Electroweak Radiation Complications due to mass and spin Follow QCD antenna shower Vincia Giele, Kosower, Skands:1102.2126 Gehrmann, Ritzmann, Skands:1108.6172 3

  4. Photon Emission

  5. Leading Color Gluon Emission Leading Color Gluon Emission Factorization → g 2 C P ( z ) p a k k | M ( .., p a , k, .. ) | 2 p a · k | M ( .., p a + k, .. ) | 2 − − − m 2 m 2  � 2 p a · p b k → 0 a | M ( .., p a , k, p b , .. ) | 2 → g 2 C b | M ( .., p a , p b , .. ) | 2 − − − ( p a · k )( k · p b ) − ( p a · k ) 2 − ( p b · k ) 2 5

  6. Leading Color Gluon Emission Factorization → g 2 C P ( z ) p a k k | M ( .., p a , k, .. ) | 2 p a · k | M ( .., p a + k, .. ) | 2 − − − m 2 m 2  � 2 p a · p b k → 0 a | M ( .., p a , k, p b , .. ) | 2 → g 2 C b | M ( .., p a , p b , .. ) | 2 − − − ( p a · k )( k · p b ) − ( p a · k ) 2 − ( p b · k ) 2 | M ( .., p a , k, p b , .. ) | 2 ≈ g 2 C a QCD b , .. ) | 2 ( p a , k, p b ) | M ( .., p 0 a , p 0 e branching 2 → 3 Computing antennae = | M ( X → p a , k, p b ) | 2 a QCD e b ) | 2 | M ( X → p 0 a , p 0 6

  7. Gluon Emission Ordering ⊥ = 16( p a · k )( p b · k ) Ordering scale t = 4 p 2 m 2 t Cutoff on t → removes singular regions Strong ordering t 1 > t 2 , t 2 > t 3 etc.. Illustration: S. Galam 7

  8. Photon Emission Factorization P ( z ) p a k k | M ( .., p a , k, .. ) | 2 → e 2 Q 2 p a · k | M ( .., p a + k, .. ) | 2 − − − a m 2 m 2  � 2 p a · p b k → 0 → − e 2 X | M ( { p } , k ) | 2 | M ( { p } ) | 2 a b Q a Q b − − − ( p a · k )( k · p b ) − ( p a · k ) 2 − ( p b · k ) 2 [ a,b ] 8

  9. Photon Emission Factorization P ( z ) p a k k | M ( .., p a , k, .. ) | 2 → e 2 Q 2 p a · k | M ( .., p a + k, .. ) | 2 − − − a m 2 m 2  � 2 p a · p b k → 0 → − e 2 X | M ( { p } , k ) | 2 | M ( { p } ) | 2 a b Q a Q b − − − ( p a · k )( k · p b ) − ( p a · k ) 2 − ( p b · k ) 2 [ a,b ] | M ( { p } , k ) | 2 ≈ e 2 a QED ( { p } , k ) | M ( { p 0 } ) | 2 e m 2 m 2  p a · p b X a a QED b ( { p } , k ) = − 2 Q a Q b ( p a · k )( k · p b ) − ( p a · k ) 2 − e ( p b · k ) 2 [ a,b ] 1 ✓ p a · k p b · k + p b · k ◆ � + m 2 a − m 2 abk − m 2 branching p a · k n → n + 1 b 9

  10. Photon Emission Ordering Separate phase space into sectors branching 2 → 3 X | M ( { p } , k ) | 2 ≈ a e ( { p } , k ) θ (( p 2 b , .. ) | 2 ? ) ab ) | M ( .., p 0 a , p 0 [ a,b ] 1 if ( p 2 ⊥ ) ab is the smallest Equivalent to ordering in ✓ ( p a · k )( p b · k ) ◆ ( p 2 � � t = 4 min ⊥ ) ab = 16 min m 2 10

  11. Matrix Element Comparison • Sample phase space uniformly using RAMBO histories a 1 ...a n − m | M m | 2 P PS • Compute matrix elements with Madgraph ME = | M n | 2 11

  12. Comparison - DGLAP equation 12

  13. Comparison - Coherence 13

  14. Photon Splitting

  15. Photon Splitting Factorization t = m 2 P s ( z ) p a k p b ab | M ( .., p a , p b ) | 2 → e 2 Q 2 | M ( .., k ) | 2 − − − − f p a · p b + m 2 = 2( p a · p b + m 2 f ) f Antenna showering → requires spectator 4( p a · q ) 2 + ( p b · q ) 2 Q 2 m 2  � f f a QED ( p a , p b , q ) = + s p a · p b + m 2 m 2 p a · p b + m 2 f abq f In QCD: Choice of spectator limited by color ordering In QED: Anything goes 15

  16. Selecting the Spectator First attempt: Select spectator uniformly What’s causing this overcounting? 16

  17. Ariadne factor Emission → is on-shell p K Giele, Kosower, Skands:1102.2126 Splitting → is taken off-shell Lönnblad: Comput.Phys.Commun. 71 (1992) 15-31 p K m 2 IK = ( p I + p K ) 2 is small Let’s say is collinear with p K p I → • Use p I as spectator → m 2 IK stays the same as spectator → m 2 IK becomes large • Use p J m 2 JK Ari IK = p m 2 IK + m 2 JK Probability to select p I as spectator 17

  18. Selecting the Spectator Generalized Ariadne factor 1 /m 2 IK Ari p IK = J 1 /m 2 P JK 18

  19. Electroweak Radiation Work in progress

  20. Importance of EW radiation Significant corrections to many processes at high energies: Exclusive di-jet: ~ 10-30% Bell, Kuhn and Rittinger: 1004.4117 W/Z + jets: ~ 5-10% Kuhn, Kulesza, Pozzorini, Schulze: 0703.283 Bauer, Ferland: 1601.07190 20

  21. Importance of EW radiation Chen, Han, Tweedie: 1611.00788 21

  22. Complications for EW radiation • CP violation → forced to keep track of fermion helicities ∆ i = 2 p i · p k + m 2 • Mass effects of the gauge bosons show up V ✓ 1 = 2 g 2 ✓ ( s − ∆ a )( s − ∆ b ) ◆◆ + 1 V + ( ∆ a ∆ b − m 2 emit s ( C v − λ C a ) V ) a V ∆ 2 ∆ 2 ∆ a ∆ b a b • Electroweak decays are a natural part of an EW parton shower Z → f ¯ W → f ¯ f 0 f t → Wb • Massive fermions → Helicity becomes handedness (not Lorentz invariant) → Handedness can flip • Physical differences between transverse and longitudinal gauge bosons → Keep track of those as well 22

  23. Amplitude level calculations Polarization vectors p a p a 1 ✏ µ u ± ( k 1 ) � µ u ± ( k 2 ) T = 2 m ¯ p k √ + L = 1 p k ✏ µ m ( k 1 − k 2 ) p b p b Spinors Vertex decides initial 1 u λ ( p ) = √ 2 k 0 · p ( / p + m ) u − λ ( k 0 ) handedness configuration 1 V = / q 1 u ρ 1 ( p A )¯ v ρ 2 ( p B ) / q 2 v λ ( p ) = √ 2 k 0 · p ( / p − m ) u − λ ( k 0 ) Write everything in terms of products of spinors → Easily calculable Future: More than two fermions → Reduction of computation times 23

  24. Conclusion & Outlook Photon emission • Resums soft and collinear logarithms • Fully coherent Photon splitting • Resums collinear logarithms • Corrects for on-shell photon effects Electroweak radiation • Complications due to mass and helicities • Naturally incorporates electroweak decays • Amplitude level calculations 24

  25. Extra Slides

  26. Sudakov Veto Algorithm Set u = t start Z u ✓ ◆ Sample t from g ( t ) exp d τ g ( τ ) − t Set u = t Accept with probability f ( t ) g ( t ) Sudakov form factor Resums logarithm Z u ✓ ◆ Done t from f ( t ) exp d τ f ( τ ) − t 26

  27. Sudakov Veto Algorithm - Competition 1 Multiple channels g i ( t ) > f i ( t ) For all channels … t 2 t 3 t 4 t 1 Select highest 0 1 Z u X X f i ( t ) exp d τ f j ( τ ) Done @ − A t i j 27

  28. Sudakov Veto Algorithm - Competition 2 Kleiss, Verheyen: 1605.09246 0 1 Z u X X g i ( t ) exp d τ g j ( τ ) Sample t from @ − A t i j g i ( t ) Select a channel with P j g j ( t ) Set u = t Accept with probability f i ( t ) g i ( t ) 0 1 Z u X X f i ( t ) exp d τ f j ( τ ) Done @ − A t i j 28

  29. Sudakov Veto Algorithm - Photon Emission Find an overestimate b ( t ) of a QED (simplified) ( { p } , k ) e Z u ✓ ◆ Start with fermion Sample t from N p b ( t ) exp d τ N p b ( τ ) − momenta { p } t Select a pair ( a, b ) uniformly Set u = t Construct the momenta p 0 a , p 0 b , k Check if ( p 2 ⊥ ) ab is the lowest Accept with probability a e ( { p 0 } , k ) b ( t ) 29

  30. Introduction (old) Two approaches to QED radiation in parton showers DGLAP • Resums collinear photon logarithms • Interleaving with QCD shower • Also applicable in antenna/dipole showers YFS • Resums soft photon logarithms • Collinear logarithms can be included, but not resummed • Afterburner to add soft photons Can we resum both the soft and collinear logarithms? Follow QCD antenna shower Vincia Giele, Kosower, Skands:1102.2126 Gehrmann, Ritzmann, Skands:1108.6172 30

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend