effective field theory of large c cfts
play

Effective Field Theory of Large-c CFTs Felix Haehl UBC Vancouver - PowerPoint PPT Presentation

Effective Field Theory of Large-c CFTs Felix Haehl UBC Vancouver (> IAS) Based on 1712.04963, 1808.02898 with M. Rozali , and work in progress with W. Reeves & M. Rozali Effective Field Theory of Large-c CFTs Felix Haehl UBC


  1. Effective Field Theory of Large-c CFTs Felix Haehl UBC Vancouver (—> IAS) Based on 1712.04963, 1808.02898 with M. Rozali , and work in progress with W. Reeves & M. Rozali

  2. Effective Field Theory of Large-c CFTs Felix Haehl UBC Vancouver (—> IAS) Based on 1712.04963, 1808.02898 with M. Rozali , and work in progress with W. Reeves & M. Rozali poster!

  3. Introduction

  4. Basic idea • Consider 2d CFT at finite temperature τ σ z = τ + i σ • Conf. symmetry is spontaneously broken z ) → ( f ( z ) , ¯ ( z, ¯ f (¯ z )) • I want to study the Goldstone mode associated with this effect • In the “holographic regime” (large c etc.) there is a systematic effective field theory for this mode

  5. • In the “holographic regime” (large c etc.) there is a systematic effective field theory for this mode • Describes universal physics of CFTs associated with energy-momentum conservation (“gravity”) • For example: effective field theory description for universal aspects of… … OTOC observables, related to quantum chaos … conformal blocks, kinematic space operators, … V(t) W(o) V(t) W(o)

  6. Basics

  7. Reparametrization modes • Consider 2d CFT at finite temperature and a small reparametrization ( z, ¯ z ) → ( z + ✏ , ¯ z + ¯ ✏ ) Z � ¯ ✏ ¯ d 2 z → S CF T + @✏ T ( z ) + @ ¯ T (¯ z ) S CF T −

  8. Reparametrization modes • Consider 2d CFT at finite temperature and a small ( z, ¯ z ) → ( z + ✏ , ¯ z + ¯ ✏ ) reparametrization Z � ¯ ✏ ¯ d 2 z → S CF T + @✏ T ( z ) + @ ¯ T (¯ z ) S CF T − • For conformal transformations, ¯ @✏ = 0 = @ ¯ ✏ the associated conserved symmetry ( J, ¯ ✏ ¯ J ) = ( ✏ T, ¯ T ) currents are

  9. Reparametrization modes • Consider 2d CFT at finite temperature and a small reparametrization ( z, ¯ z ) → ( z + ✏ , ¯ z + ¯ ✏ ) Z � ¯ ✏ ¯ d 2 z → S CF T + @✏ T ( z ) + @ ¯ T (¯ z ) S CF T − • Conformal symmetry is spontaneously broken • Regard as the associated Goldstone modes ( ✏ , ¯ ✏ ) [Turiaci-Verlinde ’16] [FH-Rozali ’18] • have an effective action determined by h T µ ν · · · T ρσ i ( ✏ , ¯ ✏ )

  10. • have an effective action determined by h T µ ν · · · T ρσ i ( ✏ , ¯ ✏ ) Z d 2 z 1 d 2 z 2 ¯ @✏ 1 ¯ W 2 = @✏ 2 h T ( z 1 ) T ( z 2 ) i + (anti-holo.) fixed by conformal symmetry! ( ✏ , ¯ ✏ ) => dynamics of is universal

  11. • have an effective action determined by h T µ ν · · · T ρσ i ( ✏ , ¯ ✏ ) Z d 2 z 1 d 2 z 2 ¯ @✏ 1 ¯ W 2 = @✏ 2 h T ( z 1 ) T ( z 2 ) i + (anti-holo.) • The effective action is actually local ¯ ∂ 1 h T ( z 1 ) T ( z 2 ) i ⇠ δ (2) ( z 1 � z 2 ) … because:

  12. • have an effective action determined by h T µ ν · · · T ρσ i ( ✏ , ¯ ✏ ) Z d 2 z 1 d 2 z 2 ¯ @✏ 1 ¯ W 2 = @✏ 2 h T ( z 1 ) T ( z 2 ) i + (anti-holo.) • The effective action is actually local ¯ ∂ 1 h T ( z 1 ) T ( z 2 ) i ⇠ δ (2) ( z 1 � z 2 ) … because: W 2 = c ⇡ Z d ⌧ d � ¯ @✏ ( @ 3 τ + @ τ ) ✏ + (anti-holo.) 6 ( z = τ + i σ )

  13. • have an effective action determined by h T µ ν · · · T ρσ i ( ✏ , ¯ ✏ ) W 2 = c ⇡ Z d ⌧ d � ¯ @✏ ( @ 3 τ + @ τ ) ✏ + (anti-holo.) 6 • Analogous to Schwarzian action in d=1

  14. • have an effective action determined by h T µ ν · · · T ρσ i ( ✏ , ¯ ✏ ) W 2 = c ⇡ Z d ⌧ d � ¯ @✏ ( @ 3 τ + @ τ ) ✏ + (anti-holo.) 6 • Analogous to Schwarzian action in d=1 • Euclidean propagator: ✓ ⌧ + i � ◆ h ✏ ( ⌧ , � ) ✏ (0 , 0) i ⇠ 1 ⇣ 1 � e − sgn( σ ) i ( τ + i σ ) ⌘ c sin 2 log 2 [FH-Rozali ’18] [Cotler-Jensen ’18] • ( Lorentzian “Schwinger-Keldysh” version is available )

  15. Feynman rules ✓ ⌧ + i � ◆ h ✏ ( ⌧ , � ) ✏ (0 , 0) i ⇠ 1 ⇣ 1 � e − sgn( σ ) i ( τ + i σ ) ⌘ c sin 2 log 2

  16. Feynman rules E ✓ ⌧ + i � ◆ h ✏ ( ⌧ , � ) ✏ (0 , 0) i ⇠ 1 ⇣ 1 � e − sgn( σ ) i ( τ + i σ ) ⌘ c sin 2 log 2

  17. Feynman rules E ✓ ⌧ + i � ◆ h ✏ ( ⌧ , � ) ✏ (0 , 0) i ⇠ 1 ⇣ 1 � e − sgn( σ ) i ( τ + i σ ) ⌘ c sin 2 log 2 • “Coupling” to pairs of other operators via reparametrization: ! [ @ f ( x ) @ f ( y )] ∆ h O ( f ( x )) O ( f ( y )) i h O ( x ) O ( y ) i � f ( x ) = x + ✏ ( x ) " # ⇢ � @✏ ( x ) + @✏ ( y ) − ✏ ( x ) − ✏ ( y ) = h O ( x ) O ( Y ) i 1+ + (anti-holo.) ∆ � x − y � tan 2

  18. Feynman rules E ✓ ⌧ + i � ◆ h ✏ ( ⌧ , � ) ✏ (0 , 0) i ⇠ 1 ⇣ 1 � e − sgn( σ ) i ( τ + i σ ) ⌘ c sin 2 log 2 • “Coupling” to pairs of other operators via reparametrization: ! [ @ f ( x ) @ f ( y )] ∆ h O ( f ( x )) O ( f ( y )) i h O ( x ) O ( y ) i � f ( x ) = x + ✏ ( x ) " # ⇢ � @✏ ( x ) + @✏ ( y ) − ✏ ( x ) − ✏ ( y ) = h O ( x ) O ( Y ) i 1+ + (anti-holo.) ∆ � x − y � tan 2 ⇢ � B (1) = h O ( x ) O ( Y ) i 1+ ∆ ( x, y ) O ( x ) E O ( y )

  19. E ✓ ⌧ + i � ◆ h ✏ ( ⌧ , � ) ✏ (0 , 0) i ⇠ 1 ⇣ 1 � e − sgn( σ ) i ( τ + i σ ) ⌘ c sin 2 log 2 O ( x ) " # @✏ ( x ) + @✏ ( y ) − ✏ ( x ) − ✏ ( y ) E B (1) ∆ + (anti-holo.) ∆ ( x, y ) ≡ � x − y � tan 2 O ( y )

  20. E ✓ ⌧ + i � ◆ h ✏ ( ⌧ , � ) ✏ (0 , 0) i ⇠ 1 ⇣ 1 � e − sgn( σ ) i ( τ + i σ ) ⌘ c sin 2 log 2 O ( x ) " # @✏ ( x ) + @✏ ( y ) − ✏ ( x ) − ✏ ( y ) E B (1) ∆ + (anti-holo.) ∆ ( x, y ) ≡ � x − y � tan 2 O ( y ) • “Feynman rules” for reparametrization Goldstone • At large c , this gives a systematic perturbation theory of energy-momentum exchanges (“gravity channel”)

  21. Applications

  22. Out-of-time-order correlators >> skip

  23. Out-of-time-order correlators • “Usual” QFT: time-ordered correlators ( TOCs ): h W ( t ) W ( t ) V (0) V (0) i β ⇠ h WW ih V V i + O ( e − t/t d ) t d ∼ β V (0) W ( t ) dissipation time: 2 π t V (0) W ( t )

  24. Out-of-time-order correlators • “Usual” QFT: time-ordered correlators ( TOCs ): h W ( t ) W ( t ) V (0) V (0) i β ⇠ h WW ih V V i + O ( e − t/t d ) t d ∼ β V (0) W ( t ) dissipation time: 2 π V (0) W ( t )

  25. Out-of-time-order correlators • “Usual” QFT: time-ordered correlators ( TOCs ): h W ( t ) W ( t ) V (0) V (0) i β ⇠ h WW ih V V i + O ( e − t/t d ) t d ∼ β V (0) dissipation time: 2 π V (0) W ( t ) W ( t )

  26. Out-of-time-order correlators • “Usual” QFT: time-ordered correlators ( TOCs ): h W ( t ) W ( t ) V (0) V (0) i β ⇠ h WW ih V V i + O ( e − t/t d ) V (0) • OTOCs display exp. V (0) “Lyapunov” growth W ( t ) ( quantum chaos ): W ( t ) h W ( t ) V (0) W ( t ) V (0) i β h 1 � # e λ L ( t − t ∗ ) i ⇠ h WW ih V V i [Shenker-Stanford ’13] t ∗ ∼ β [Maldacena-Shenker-Stanford ‘15] scrambling time: 2 π log N [Kitaev ’15] …..

  27. Out-of-time-order correlators • “Usual” QFT: time-ordered correlators ( TOCs ): h W ( t ) W ( t ) V (0) V (0) i β ⇠ h WW ih V V i + O ( e − t/t d ) V (0) • OTOCs display exp. V (0) “Lyapunov” growth W ( t ) ( quantum chaos ): W ( t ) h W ( t ) V (0) W ( t ) V (0) i β h 1 � # e λ L ( t − t ∗ ) i ⇠ h WW ih V V i [Shenker-Stanford ’13] t ∗ ∼ β [Maldacena-Shenker-Stanford ‘15] scrambling time: 2 π log N [Kitaev ’15] …..

  28. Out-of-time-order correlators • “Usual” QFT: time-ordered correlators ( TOCs ): h W ( t ) W ( t ) V (0) V (0) i β ⇠ h WW ih V V i + O ( e − t/t d ) V (0) • OTOCs display exp. “Lyapunov” growth ( quantum chaos ): W ( t ) V (0) W ( t ) h W ( t ) V (0) W ( t ) V (0) i β h 1 � # e λ L ( t − t ∗ ) i ⇠ h WW ih V V i [Shenker-Stanford ’13] t ∗ ∼ β [Maldacena-Shenker-Stanford ‘15] scrambling time: 2 π log N [Kitaev ’15] …..

  29. V (0) h W ( t ) V (0) W ( t ) V (0) i β W ( t ) h 1 � # e λ L ( t − t ∗ ) i ⇠ h WW ih V V i V (0) W ( t )

  30. V (0) h W ( t ) V (0) W ( t ) V (0) i β W ( t ) h 1 � # e λ L ( t − t ∗ ) i ⇠ h WW ih V V i V (0) • : Lyapunov growth is λ L = 2 π T W ( t ) described by an exchange of the reparametrization mode: h W ( t ) V (0) W ( t ) V (0) i β ⇠ h B (1) ∆ W ( t, t ) B (1) ∆ V (0 , 0) i β ⇠ h ✏ ( t ) ✏ (0) i

  31. V (0) h W ( t ) V (0) W ( t ) V (0) i β W ( t ) h 1 � # e λ L ( t − t ∗ ) i ⇠ h WW ih V V i V (0) • : Lyapunov growth is λ L = 2 π T W ( t ) described by an exchange of the reparametrization mode: h W ( t ) V (0) W ( t ) V (0) i β ⇠ h B (1) ∆ W ( t, t ) B (1) ∆ V (0 , 0) i β ⇠ h ✏ ( t ) ✏ (0) i

  32. V (0) h W ( t ) V (0) W ( t ) V (0) i β W ( t ) h 1 � # e λ L ( t − t ∗ ) i ⇠ h WW ih V V i V (0) • : Lyapunov growth is λ L = 2 π T W ( t ) described by an exchange of the reparametrization mode: h W ( t ) V (0) W ( t ) V (0) i β ⇠ h B (1) ∆ W ( t, t ) B (1) ∆ V (0 , 0) i β ⇠ h ✏ ( t ) ✏ (0) i • A universal contribution to the OTOC , described by the collective mode ✏ [FH-Rozali ’18] [Blake-Lee-Liu ‘18]

  33. 2k-point OTOC • Higher-point generalisation of OTOC: [FH-Rozali ’17 ‘18] ⌦ ↵ [ ][ ][ ] [ ] V 1 V 1 V 2 V 3 V 2 V 3 V k V 4 V k − 1 V k · · · , , , β , F 2 k ( t 1 , . . . , t k ) = h V 1 V 1 i · · · h V k V k i

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend