critical interfaces in random media random bond potts
play

Critical interfaces in random media: random bond Potts model and - PowerPoint PPT Presentation

Critical interfaces in random media: random bond Potts model and logarithmic CFTs Raoul Santachiara LPTMS (Orsay) GGI, Florence 2008 In collaboration: Jesper Jacobsen, Pierre Le Doussal, Kay Wiese: LPTENS,Paris Marco Picco: LPTHE,Paris


  1. Critical interfaces in random media: random bond Potts model and logarithmic CFTs Raoul Santachiara LPTMS (Orsay) GGI, Florence 2008 In collaboration: Jesper Jacobsen, Pierre Le Doussal, Kay Wiese: LPTENS,Paris Marco Picco: LPTHE,Paris October 28, 2008 R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 1 / 24

  2. Outlines Outline Pure critical Ising and 3 − states Potts model: geometrical exponents 1 Random bond Potts Model: perturbed CFT approach 2 Geometric exponents in the random Potts model: perturbative CFT 3 computation and logarithmic correlation functions Numerical studies:Montecarlo and Transef Matrix methods 4 Conclusions 5 R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 2 / 24

  3. Pure critical Ising and 3 − states Potts model: geometrical exponents ISING MODEL: H = − J � < ij > σ i σ j Critical point ⇒ Local Scale Invariance ⇒ CFT R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 3 / 24

  4. Pure critical Ising and 3 − states Potts model: geometrical exponents ISING MODEL, Local observables: Minimal M 3 , Unitary grid 1/2 0 ε Id 1/16 1/16 ∆ n , m = − 1 + 16 m 2 − 24 mn + 9 n 2 σ σ 1/2 0 48 ε 1 ≤ n ≤ 3 1 ≤ m ≤ 2 Id Energy and Spin-Spin correlation functions: c = 1 / 2 { φ } = { I , σ, ε } { ∆ } = { 0 , 1 / 16 , 1 / 2 } < σ ( z ) σ (0) > = | z | − 1 / 4 < ε ( z ) ε (0) > = | z | − 2 σσ → I + ε , εε → I R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 4 / 24

  5. Geometrical description of phase transitions Geometrical objects.. Stochastic (FK) clusters: Bond between equal spin with prob. � � � � � � � � � � � � p = 1 − e − K � � � � � � � � Geometric (G) clusters: p = 1 �� �� � � � � � � �� �� � � �� �� � � � � � � � � � � � � Taken from Wolfhard Janke, KITP2006 show fractal behaviour and critical scaling Distribution of FK, G → Ising, q = 1 tricritical Potts critical exponent In 3 D Ising: different percolation temperature.. ..also in 2D non-minimal spin models? (M.Picco, A. Sicilia,RS, in progress) R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 5 / 24

  6. Geometrical description of phase transitions ...random interfaces and geometric exponents Prob. two points belong to the perimeter of the same FK,G cluster: H. Blote,Y. Knops,B. Nienhuis (1992) 1 ∝ < φ FK , G ( z 1 ) φ FK , G ( z 2 ) > = | z 1 − z 2 | 4∆ FK , G φ FK = φ 1 , 0 , φ G = φ 0 , 1 I. Rushkin, E. Bettelheim, I. A. Gruzberg, P. Wiegmann (2007) Extended Kac Table, logarithmic minimal model P. Pearce, J. Rasmussen, J.Zuber (2006),Y.Saint-Aubin,P. Pearce, J. Rasmussen (2008) fractal dimensions d FK , G = 2 − 2∆ FK , G f d FK = 5 / 3( SLE 16 / 3 ), d G f = 11 / 8 ( SLE 3 ) f A.Coniglio,A den Nijs, J. Cardy, B. Duplantier, B. Nienhuis , H. Saleur,C. Vanderzande R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 6 / 24

  7. Geometrical description of phase transitions 3 − states Potts model , H = − J � < ij > δ σ i ,σ j : Y. Deng,H. Blote, B. Nienhuis √ Critical at β c : e β c J = 1 + 3 33/40 1/5 7/24 143/120 d FK = 8 / 5( SLE 24 / 5 ), d G f = 17 / 12 ( SLE 10 / 3 ) f R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 7 / 24

  8. Random bond Potts Model: perturbed CFT approach General q -states Potts model: � e β P � ij � J ij δ σ i σ j ∼ � � Z = � 1 − p ij + p ij δ σ i σ j � { σ i } { σ i } � ij � For J ij = J , p = 1 − e − β J : p |G| (1 − p ) |G| q ||G|| , � Z ∼ G R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 8 / 24

  9. Random bond Potts Model: perturbed CFT approach Bond disorder and perturbed CFT J ij = J + δ J ij : Gaussian random variables: β 2 δ J 2 ij = g 0 weak disorder: √ g 0 ≪ β J Near the β c : � d 2 x ε ( x ) δ J ( x ) H = H pure + β H pure → Minimal CFT with 3 √ q = 2 cos( π/ (2 ǫ − 4)) c = 1 − (2 ǫ + 3)( ǫ + 2) ǫ : RG regularitation parameter. ǫ = 0 , 1 → Ising and 3 − states Potts R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 9 / 24

  10. Random bond Potts Model: perturbed CFT approach Bond disorder: replica approach n � � � − β H a exp a =1 n n � � � � � H a d 2 x ε a ( x ) ε b ( x ) = exp − β pure + g 0 a =1 a , b =1 4∆ ε = 2 ǫ + 6 2 ǫ + 3 ǫ = 0 (Ising) → 4∆ ε = 2, disorder is marginal ǫ = 1 (3 − state Potts) → 4∆ ε < 2, disorder is relevant R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 10 / 24

  11. Random bond Potts Model: perturbed CFT approach β g*~ ε g Disordered fixed point Pure Model β ( g ) = (2 − 4∆ ǫ ) g + 4 π ( n − 2) g 2 + · · · Replica limit: n → 0, g ∗ = 1 − 2∆ ǫ , conformal symmetry restored 4 π Perturbative computation in g and ǫ − expansion around the Ising model analogous to the ǫ -expansion for φ 4 scalar field theory around the gaussian model R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 11 / 24

  12. Random bond Potts Model: perturbed CFT approach Energy and Spin disordered average correlation functions A. Ludwig 1987, Vl. Dotsenko, M. Picco and P. Pujol, 1995 < O (0) O ( R ) > = < O (0) O ( R ) > 0 + < S I O (0) O ( R ) > 0 + n +1 � 2 < S 2 d 2 x � ε a ( x ) ε b ( x ) I O (0) O ( R ) > 0 + · · · S I = g 0 a , b =1 1 1 < ε (0) ε ( x ) > = < σ (0) σ ( x ) > = | x | 4∆ ∗ | x | 4∆ ∗ ε σ 2∆ ∗ ε = 2∆ ε + 0( ǫ ) ∼ 2∆ ε +0 . 36 + 0( ǫ 3 ) 2∆ ∗ σ = 2∆ σ + 0( ǫ 3 ) ∼ 2∆ σ +0 . 00264 + 0( ǫ 4 ) R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 12 / 24

  13. Geometric exponents in the random Potts model: perturbative CFT computation and logarithmic correlation functions Renormalization of the operator Φ 1 , 0 Second order diagrams:     10 ( z 1 ) g 2 � � 0 � �  → Φ a Φ a ε b ( z 2 ) ε c ( z 2 ) ǫ d ( z 3 ) ε e ( z 3 ) 10 ( z 1 )  2! z 2 z 3 b � = c d � = e We have to consider the following integral: � � Φ 10 ( z 1 ) ε ( z 2 ) ε ( z 3 )Φ 10 ( ∞ ) � � ε ( z 2 ) ε ( z 3 ) � z 2 , z 3 R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 13 / 24

  14. Geometric exponents in the random Potts model: perturbative CFT computation and logarithmic correlation functions Appearence of logarithmics.. < Φ 10 ( z 1 ) ε ( z ) ε ( z 2 )Φ 10 ( z 3 ) > = · · · η c 1 ( η − 1) c 2 H ( η ) Hypergeometric differential equation: ′′ ( η )+( a (∆ 12 , c 1 ) − b ( c 1 , c 2 , ∆ 12 ) η ) H ′ ( η ) − c (∆ 12 , c 1 , c 2 ) H ( η ) = 0 η (1 − η ) H 3 2(2∆ 12 + 1)( c 1 ( c 1 − 1)) = ∆ 10 − c 1 3 2(2∆ 12 + 1)( c 2 ( c 2 − 1)) = ∆ 12 − c 2 R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 14 / 24

  15. Geometric exponents in the random Potts model: perturbative CFT computation and logarithmic correlation functions Solutions of the hypergeometric diff eq: H ( η ) = a 1 H 1 ( η ) + a 2 (ln( η ) H 1 ( η ) + H 2 ( η )) Consistent with the OPE: Gurarie (1994) � ′ ( z ) + 1 � ′ ( z ) φ 1 , 0 ( η ) ε (0) = η − ∆ 1 , 2 − ∆ 1 , 0 +1 W ( z ) ln( z ) + W z ∂ z W Imposing simple monodromy: 2 p =2 = Γ( 1 3 ) 6 | u | � 3 � 2 � − 1 3 , 2 �� � G ( u ) � 2 F 1 3 ; 2; u � 27 π 2 | 1 − u | 2 � 2 Γ( 1 3 ) 8 1 3 , 4 | u | � � � 3 � G 2 , 0 − 1 3 , 2 � √ � � 3 + 2 F 1 3 ; 2; u u 2 , 2 � | 1 − u | 2 − 1 , 0 54 3 π 3 � � + c . c . , R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 15 / 24

  16. Geometric exponents in the random Potts model: perturbative CFT computation and logarithmic correlation functions Coulomb gas � � d 2 zV + + µ − d 2 zV − S = S 0 + µ + α + α − = − 1 α + + α − = 2 α 0 V ± = : exp ( i α ± ϕ ( z )) : 1 − 12 α 2 = < ϕ ( z ) ϕ (0) > = − 4 log | x / L | c 0 3 √ q = 2 cos( π/ (2 ǫ − 4)) c = 1 − ( ǫ + 2)(2 ǫ + 3) Operators Φ n , m ( z ) written in terms of vertex operators Φ nm ( z ) → V nm ( z ) =: exp ( i α nm ϕ ( z )) : 1 − n α − + 1 − m α nm = α + 2 2 R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 16 / 24

  17. Geometric exponents in the random Potts model: perturbative CFT computation and logarithmic correlation functions Results: � � Φ 10 ( z 1 ) ǫ ( z 2 ) ǫ ( z 3 )Φ 10 ( ∞ ) � � ǫ ( z 2 ) ǫ ( z 3 ) � z 2 , z 3 Coulomb gas (+procedure of ”regularitation” logarithmic cf) → � 10 ( ∞ ) � | z 2 − z 3 | − 4∆ 12 I = N � V 10 ( z 1 ) V 1 , 2 ( z 2 ) V 1 , 2 ( z 3 ) V + ( u ) V ¯ z 2 , z 3 , u how to compute that? see Dotsenko, Picco, Pujol, (1995)! From RG: ǫ 2 2∆ 10 + I 9˜ − 2 ǫ 2∆ ∗ = ˜ ǫ = 10 16 π 3(3 + 2 ǫ ) 2 = 8 p =3 d FK = 5 − 0 . 01433 → 5+0 . 01433 f R. Santachiara (LPTMS,Orsay) Critical interfaces in random media: October 28, 2008 17 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend