efficient reconstruction of functions on the sphere from
play

Efficient reconstruction of functions on the sphere from scattered - PowerPoint PPT Presentation

Efficient reconstruction of functions on the sphere from scattered data Daniel Potts Department of Mathematics Chemnitz Universitiy of Technology email: potts@mathematik.tu-chemnitz.de http://www.tu-chemnitz.de/ potts Content NFFT


  1. Efficient reconstruction of functions on the sphere from scattered data Daniel Potts Department of Mathematics Chemnitz Universitiy of Technology email: potts@mathematik.tu-chemnitz.de http://www.tu-chemnitz.de/ ∼ potts

  2. Content • NFFT • NFSFT • Iterative reconstruction on S 2 • Probabilistic arguments numerical examples

  3. NFFT (Dutt,Rokhlin;Beylkin; Steidl; P .,Steidl,Tasche) fast computation of of the sums N/ 2 − 1 N/ 2 − 1 � � f k e − 2 π i kv j f ( v j ) = . . . ( j = − M/ 2 , . . . , M/ 2 − 1) k 1 = − N/ 2 k d = − N/ 2 M/ 2 − 1 ( − N 2 ≤ k < N � f j e 2 π i kv j h ( k ) = 2 ) j = − M/ 2 for equispaced nodes v j := j N ( M = N d ) FFT ( fast Fourier transform ) in O ( N d log N ) for arbitrary nodes v j ∈ [ − 1 / 2 , 1 / 2) d NFFT ( nonequispaced FFT ) in O ( N d log N + m d M )

  4. Fourier algorithms on the sphere Problem: fast computation of N k � � a n k Y n f ( θ, φ ) = k ( θ, φ ) n = − k k =0 at arbitrary nodes ( θ d , φ d ) ∈ S 2 ( d = 0 , . . . , M − 1) • discrete spherical Fourier transform (FFT on S 2 ) ( θ d 1 , φ d 2 ) := ( d 1 π D 1 , 2 d 2 π d 1 = 0 , . . . , D 1 − 1 , d 2 , . . . , D 2 − 1 D 2 − 1 ) Driscoll, Healy (1994, 2003, ...); Potts, Steidl, Tasche (1998); Mohlenkamp (1999); Suda, Takami (2002); Rokhlin, Tygert (2006) • nonequispaced discrete spherical Fourier transform (NFFT on S 2 ) ( θ d , φ d ) ∈ S 2 , d = 0 , . . . , M − 1 Kunis, P . (2003); Keiner, P . (2008)

  5. Inverse NFFT on the sphere i N k � � ˆ f n k Y n ∈ Π N ( S 2 ) f = k k =0 n = − k ”inverse” problem, f ∈ C M given in � � ˆ k =0 ,...,N, | n |≤ k ∈ C ( N +1) 2 , f ∈ C M Y ˆ ˆ f n f ≈ f , f = k � � f ( ξ j ) j =0 ,...,M − 1 ≈ f spherical Fourier matrix j =0 ,...,M − 1; k =0 ,...,N, | n |≤ k ∈ C M × ( N +1) 2 . Y n � � �� Y := ξ j k

  6. The geodetic distance of ξ , η ∈ S 2 is given by dist ( ξ , η ) := arccos ( η · ξ ) . We measure the “nonuniformity” of a sampling set X := { ξ j ∈ S 2 : j = 0 , . . . , M − 1 } , M ∈ N , by the mesh norm δ X and the separation distance q X , defined by δ X := 2 max j =0 ,...,M − 1 dist ( ξ j , ξ ) , min ξ ∈ S 2 q X := 0 ≤ j<l<M dist ( ξ j , ξ l ) . min The sampling set X is called • δ -dense for some 0 < δ ≤ 2 π , if δ X ≤ δ , and • q -separated for some 0 < q ≤ 2 π , if q X ≥ q .

  7. 0 10 −5 10 −10 10 −15 10 0 10 20 30 40 Distribution of the singular va- lues of the spherical Fourier ma- trix Y ∈ C M × ( N +1) 2 with respect Generalised spiral nodes to the polynomial degrees N = 0 , . . . , 40 for M = 400 generali- sed spiral nodes

  8. Least squares approximation M > ( N + 1) 2 over-determined M − 1 ˆ f � � f − Y ˆ f � 2 w j | f j − f ( ξ j ) | 2 W = → min j =0 W := diag ( w j ) j =0 ,...,M − 1 ∈ R M × M , weights w j > 0 The least squares problem is equi- valent to the normal equation of first kind Y ⊢ ⊣ W Y ˆ f = Y ⊢ ⊣ W f .

  9. Theorem: (Filbir ,Themistoclakis, 2008) Let a δ -dense sampling set X ⊂ S 2 of cardinality M ∈ N be given. Mo- reover let for N ∈ N with 154 Nδ < 1 and W = diag ( w j ) j =0 ,...,M − 1 , with Voronoi weights w j be given. Then we have for arbitrary spherical polyno- mials f ∈ Π N ( S 2 ) , for the vector f = � � f ( ξ j ) j =0 ,...,M − 1 the weighted norm estimate (1 − 154 Nδ ) � f � 2 L 2 ≤ � f � 2 W ≤ (1 + 154 Nδ ) � f � 2 L 2 . Proof: based on spherical Marcinkiewicz-Zygmund inequalities (Mhaskar, Narcowich and Ward, 01; Filbir and Themistoclakis, 06). Corollary: Y ⊢ ⊣ W Y Y ⊢ ⊣ W Y � � � � 1 − 154 Nδ ≤ λ min ≤ 1 ≤ λ max ≤ 1 + 154 Nδ i.e. a constant number of iterations in CGNR method is suffices to decrease the residual to a certain fraction

  10. Optimal interpolation M < ( N + 1) 2 under-determined • given sample values f j ∈ C , j = 0 , . . . , M − 1 and weights ˆ w k > 0 2 � � � ˆ f n N k N k � � k � � � � � ˆ f n k Y n � � min = f j subject to ξ j k w k ˆ f ∈ C ( N +1)2 ˆ k =0 n = − k k =0 n = − k The optimal interpolation problem is equivalent to the normal equations of second kind ⊣ ˜ ⊣ ˜ Y ˆ W Y ⊢ f = ˆ ˆ W Y ⊢ f = f , f , where ˆ w n w k , k = 0 , . . . , N, | n | ≤ k . W := diag ( ˜ w ) with ˜ k = ˆ • polynomial kernel K N : [ − 1 , 1] → C and its associated matrix N 2 k + 1 � � � �� ξ j · ξ l K N ( t ) := w k P k ( t ) , ˆ K := K N j,l =0 ,...,M − 1 4 π k =0 K = Y ˆ W Y ⊢ ⊣

  11. Theorem: (Kunis, 2005; Keiner, Kunis, P ., 2006) Let a q -separated sampling set X ⊂ S 2 of cardinality M ∈ N and with q ≤ π be given. Then for N, β ∈ N , N ≥ β − 1 ≥ 2 , the kernel matrix K = ( K j,l ) j,l =0 ,...,M − 1 , K j,l = B β,N ( ξ j · ξ l ) , has bounded eigenvalues | λ ( K ) − 1 | ≤ 25 c β ζ ( β − 1) (( N + 1) q ) β . Corollary: Let a q -separated sampling set X ⊂ S 2 of cardinality M ∈ N and with q ≤ π be given. Moreover, let N ∈ N , ( N + 1) q > 11 . 2 , and weights be given by the sampled cubic B-Spline. Then we have � 4 � 4 � 11 . 2 � 11 . 2 ≤ λ min ( Y ˆ ⊣ ) ≤ λ max ( Y ˆ W Y ⊢ W Y ⊢ ⊣ ) ≤ 1+ 1 − . ( N + 1) q ( N + 1) q i.e. a constant number of iterations in CGNE method is suffices to decrease the error to a certain fraction

  12. Numerical example 90 300 Latitude 250 0 200 150 -90 -180 -90 0.0 90 180 Longitude The original atmospheric temperature of the earth from 5 November 2006 measured by a satellite in Kelvin.

  13. 90 300 Latitude 250 0 200 150 -90 -180 -90 0.0 90 180 Longitude Least squares approximation to the global temperature data with N = 32 .

  14. 90 300 Latitude 250 0 200 150 -90 -180 -90 0.0 90 180 Longitude Least squares approximation to the global temperature data with N = 128 .

  15. Probabilistic Marcinkiewicz-Zygmund Inequalities (B¨ ottcher, Kunis, P . 08) Observation: in practice theoretically ill-conditioned systems often behave better than one would expect Idea: probabilistic arguments • Bass, Gr¨ ochenig, Rauhut (03,07): results for randomly chosen sampling nodes • deterministic MZ inequality (Filbir ,Themistoclakis) (1 − 154 Nδ ) � f � 2 L 2 ≤ � f � 2 W ≤ (1 + 154 Nδ ) � f � 2 L 2 • Now: randomly chosen polynomials (1 − ǫ ) � f � 2 L 2 ≤ � f � 2 W ≤ (1 + ǫ ) � f � 2 � � ≥ 1 − η P L 2

  16. Example on S 2 : • to ensure the inequality 1 2 � f � 2 ≤ � f � W , 2 ≤ 3 2 � f � 2 (1) for N ≤ 13 , one has to require that R ≤ 1 / (2 · 13 · 84) ≈ 0 . 000 46 (Filbir, Themistoclakis 06, case q=3, p=2); • ˆ f n k taken at random from the uniform distribution, then � 1 2 � f � 2 ≤ � f � W , 2 ≤ 3 � 2 � f � 2 ≥ 0 . 95 P whenever R ≤ 0 . 000 46 and N ≤ 2 184 , on the earth l = 2 . 03 km , using (1) for N ≤ 2184 we have to take l = 12 m . R is partition norm R = max diam R j := max ξ , η ∈ R j d ( ξ , η ) max j j

  17. By A. B¨ ottcher, S. Grudsky (EJP ,03) it was shown that if x is randomly drawn from the uniform distribution and A ∈ C m × n � � 2 � � AA ⊢ ⊣ � 2 � Ax � 2 � x � 2 − � A � 2 � � A � 2 �� � � ≥ 1 − 2 � F � F F � ≤ ε − P � � n nε 2 n n � Corollary: Let A ∈ C m × n and suppose � A � 2 F = n . If x is taken at random from the uniform distribution on B n , then ≥ 1 − 2 � AA ⊢ ⊣ � 2 � 1 − ǫ ≤ � Ax � 2 � F ≤ 1 + ǫ P � x � 2 n 2 ǫ 2 (2 − ǫ ) 2 for every ǫ ∈ (0 , 1) .

  18. Theorem: (B¨ ottcher, Kunis, P ., 08) If NR ≤ 1 then � 1 − ǫ ≤ � f � W , 2 � 2(1 + B d NR ) ≤ 1 + ǫ ≥ 1 − P � f � 2 N d ( N ) ǫ 2 (2 − ǫ ) 2 for each ǫ ∈ (0 , 1) . B d = 3 d/ 2 is Filbir/Themistoclakis constant depending only on d N d ( N ) is the dimension of Π d N R is partition norm R = max diam R j := max ξ , η ∈ R j d ( ξ , η ) max j j

  19. Corollary: Let NR ≤ 1 . If 0 < α < d/ 2 , then a N := 2(1 + B d NR ) N 2 α ∼ Γ( d + 1)(1 + B d NR ) N d ( N ) N d − 2 α and � 1 − 1 N α ≤ � f � W , 2 ≤ 1 + 1 � ≥ 1 − a N . P � f � 2 N α If 0 < β < d , then � � Γ( d + 1)(1 + b d NR ) 2 N β (1 + B d NR ) b N := ∼ N d ( N ) N ( d − β ) / 2 and � 1 − b N ≤ � f � W , 2 � ≥ 1 − 1 ≤ 1 + b N N β . P � f � 2

  20. Theorem: Let d ≥ 2 , ǫ ∈ (0 , 1) , η ∈ (0 , 1) , L ∈ (1 , ∞ ) , and suppose the set X has partition norm R and separation distance q . Then there exists a positive number ̺ 0 = ̺ 0 ( d, ǫ, η, L ) > 0 such that � 1 − ǫ ≤ � f � W , 2 � ≤ 1 + ǫ ≥ 1 − η P � f � 2 for every polynomial degree N ≥ 0 whenever the uniformity condition R/q < L and the density condition R < ̺ 0 hold.

  21. Conclusions • NFFT and inverse NFFT • NFFT on the sphere • Iterative reconstruction on S 2 • Probabilistic arguments http://www.tu-chemnitz.de/ ∼ potts

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend