proton decay matrix elements on lattice
play

Proton decay matrix elements on lattice Jun-Sik Yoo 1 1 Department of - PowerPoint PPT Presentation

Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Proton decay matrix elements on lattice Jun-Sik Yoo 1 1 Department of Physics and Astronomy Stony Brook University 2019 Lattice x Intensity


  1. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Proton decay matrix elements on lattice Jun-Sik Yoo 1 1 Department of Physics and Astronomy Stony Brook University 2019 Lattice x Intensity Frontier Workshop, BNL, Sept. 23-25, 2019 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  2. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Introduction 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  3. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Proton Decay Process p − → Π + ℓ Baryon Number Violation Haven’t been observed. Lifetime > 10 34 years Does proton even decay? 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  4. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Experimental bound Current proton decay bound in SK, (ABE et al., 2018) 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  5. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Proton Decay Process p − → Π + ℓ Baryon Number Violation Haven’t been observed. Lifetime > 10 34 years Motivated by Baryon Asymmetry Possible explanation by GUT, SUSY-GUT 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  6. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Effective operators Four-fermion effective operators p − → Π + ℓ Hadronic states : Nonperturbative computation required. 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  7. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Effective operator 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  8. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference GUT, SUSY-GUT GUT Symmetry group to be G ⊃ SU (3) C ⊗ SU (2) L ⊗ U (1) Y ♣ Coupling unification ♣ Baryon asymmetry SUSY-GUT ♣ Superpartners to particles ♣ Better unification at higher scale 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  9. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference GUT,SUSY-GUT (a) d=4 operator (b) d=5 operator (c) d=6 operator Possible BV operators in (SUSY-)GUT 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  10. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference GUT,SUSY-GUT (d) ∼ Λ GUT (e) ∼ Λ SUSY (f) ∼ Λ EW Proton decay operator at different scales Model parameters come into Wilson coefficients (a) Y qq , Y ql , Y ud , Y ue (b) M H C (c) m ˜ l , m ˜ q , triangle loop integrals, ... 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  11. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Effective operators Figure 1: Four-fermion effective operators Effective operator : O ΓΓ ′ = ( qq ) Γ ( q ℓ ) Γ ′ , ( XY ) Γ = ( X T C P Γ Y ) C := (Charge Conjugation Matrix) ℓ |O ΓΓ ′ | p � SM = C ΓΓ ¯ � Π¯ ℓ | p � GUT ∼ C ΓΓ � Π¯ v ℓ � Π | ( qq ) Γ P Γ ′ q | p � , where C ΓΓ ′ is a wilson coefficient, Π is a meson, and p is a proton. 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  12. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Decay rate The decay rate Γ is calculated from the hadronic matrix element, � Π( p ′ ) | O ΓΓ ′ ( q ) | N ( p , s ) � � ( q 2 ) − i / q � W ΓΓ ′ W ΓΓ ′ ( q 2 ) = ¯ u N ( p , s ) (1) v ℓ P Γ ′ 0 1 m N v ℓ P Γ ′ W ΓΓ ′ ( q 2 ) u N ( p , s ) + O ( m l / m N ) ¯ = ¯ v ℓ u N ( p , s ) 0 where Π a meson, N a nucleon, and W 0 , 1 decay form factor(AOKI et al., 2000). Then the decay rate is 2 � � = ( m 2 p − m 2 Π ) 2 � � p → Π + ¯ p → Π + ¯ � C I W I � � � � Γ ℓ ℓ . (2) � � 0 32 π m 3 � � p � � I 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  13. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Matrix elements on lattice 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  14. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Hadronic states Correlation function [ 1 13] 0.750 [ 2 13] C 2 pt [ 3 13] K ( t , � p ) [ 4 13] 0.725 log (C2pt) vs. t 0.700 log(C(t)/C(t+1)) � e i � p · � x � 0 | J K ( t , � x ) J † K (0 ,� 0.675 = 0) | 0 � 0.650 � x 0.625 0.600 = asymptotic states + ... 0.575 2 4 6 8 10 12 t/a p K = [0 , 1 , 1] p min Excited states at early times Ground state at late times 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  15. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Three-point function C 3 pt ( t , t ′ ) � e i ( � p ′ · � x ′ − � x ) � 0 | J Π ( x ′ ) O ( x ) ¯ q · � = J N ( x 0 ) | 0 � (Meson)-(Decay Operator)-(Proton) � x ,� x ′ p ′ ) |O| N ( � = � Π( � p ) � Π ( t ′ − t , � × C 2 pt Tr[ PC 2 pt p ′ ) ( t , � p )] p √ Z Π � Z p 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  16. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Lattice settings Lattice paramters 24 3 × 64 × 24 32 3 × 64 × 32 lattice size lattice size gauge action Iwasaki-DSDR gauge action Iwasaki-DSDR fermion DWF fermion DWF β 1.633 β 1.75 a − 1 = 1GeV a − 1 = 1 . 37GeV lattice cutoff lattice cutoff m l a 0.00107 m l a 0.0001 m h a 0.0850 m h a 0.0450 0 . 1387 0 . 1046 m π a m π a 0.5051 0 . 3602 m K a m K a m res 0.00228 m res m π L 3.3 m π L 3.3 Deflated CG 2000+1000 Deflated CG 2000+250 AMA 32+1 AMA 32+1 N cfg 102 N cfg 20(and counting) 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  17. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Kinematic Choice Energy-momentum conservation & q 2 ∼ 0 3.0 3.0 2.5 2.5 2.0 2.0 p min 1.5 p min 1.5 |p| |p| 1.0 1.0 012 002 0.5 0.5 111 001 011 011 0.0 001 0.0 111 0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20 q 2 a 2 q 2 a 2 π K 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  18. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Matrix elements decay form factor < K 0 |( us ) L u L | p > 0.075 0 ( p → K 0 e + ) at t sep = 8 W LL 0.070 p p = [0 , 0 , 0] p min , 0.065 W 0 a 2 0.060 p K = [0 , 1 , 1] p min 0.055 2 = 2.355 0.050 p = [0, 1, 1] 0.045 plateau fit t=3–5 0 1 2 3 4 5 6 t / a AMA 32+1, 102 configs 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  19. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Matrix elements Decay matrix elements w/ different src-sink separation { 8,9,10 } 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  20. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Matrix elements Decay matrix elements w/ different src-sink separation { 8,9,10 } 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  21. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Comparison with earlier work Bare value, but multiplicative renormalization only − → ratio can be compared with renormalized values � � W ΓΓ ′ ( Channel ) � � W norm 0 = (3) � � 0 W ΓΓ ′ ( � K + | ( ds ) Γ u Γ ′ | p � ) � � 0 � � 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  22. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Comparison with earlier work This Study + |(ud) L d R |p Aoki:2017 + |(ud) L d L |p K + |(ds) L u R |p K + |(ds) L u L |p K + |(ud) L s R |p K + |(ud) L s L |p K + |(us) L d R |p K + |(us) L d L |p K 0 |(us) L u R |p K 0 |(us) L u L |p 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 Comparison with earlier study, (AOKI et al., 2017) 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

  23. Introduction Effective operator Matrix elements on lattice Future projects Conclusion Reference Comparison with earlier work + |(ud) L d R |p + |(ud) L d L |p K + |(ds) L u R |p K + |(ds) L u L |p K + |(ud) L s R |p K + |(ud) L s L |p K + |(us) L d R |p K + |(us) L d L |p K 0 |(us) L u R |p This Study K 0 |(us) L u L |p Aoki:2017 0.0 0.5 1.0 1.5 2.0 Comparison with earlier study, (AOKI et al., 2017) 2019 Lattice x Intensity Frontier Workshop, JS Yoo Proton Decay / 41

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend