effect of concentrated electrolyte on high voltage
play

Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion - PowerPoint PPT Presentation

Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery Kosuke Nakamoto, Ayuko Kitajou*, Masato Ito* and Shigeto Okada* (IGSES, Kyushu University, *IMCE, Kyushu University) Oct 6. (Thu) A01-0134 Introduction Commercialized


  1. Effect of Concentrated Electrolyte on High Voltage Aqueous Sodium-ion Battery Kosuke Nakamoto, Ayuko Kitajou*, Masato Ito* and Shigeto Okada* (IGSES, Kyushu University, *IMCE, Kyushu University) Oct 6. (Thu) A01-0134

  2. Introduction

  3. Commercialized secondary batteries and post lithium-ion batteries Electrolyte Aqueous Organic Solid Commercial Nickel metal hydride Lithium-ion Sodium sulfur Post LIB Aqueous lithium-ion Sodium-ion This study Aqueous sodium-ion Advantage Non-inflammability, Cost, P ower � /disadvantage Energy density Hybrid capacitor (Aquion Energy) Components Lithium-ion Aqueous sodium-ion Electrolyte solvent Organic Water Electrolyte salt LiPF 6 , LiTFSI Na 2 SO 4 , NaClO 4 Separator Polypropylene porous Nonwoven fabric Anode current collector Cu Fe Cathode active material Co, Ni Fe, Mn Electrode slurry thickness ~ 100 µ m ~ 20,000 µ m Operation voltage ~ 4 V ~ 2 V Primary requirement to the large scale energy storage system is the cost (Wh/$), rather than specific energy density (Wh/kg).

  4. Electrode materials for aqueous lithium-ion battery 2 5 LiNi 0.5 Mn 1.5 O 4 4 LiCoO 2 LiMn 2 O 4 1 LiNi 0.5 Mn 1.5 O 4 E = 1.23 – 0.059pH 1 4 O 2 ↑ LiFePO 4 E (V) vs. Na/Na + 3 Theoretical stability window LiMn 2 O 4 0 E (V) vs. NHE E (V) vs. Ag/AgCl E (V) vs. Li/Li + 0 of water 3 Mo 6 S 8 LiV 3 O 8 Polyimide H 2 ↑ VO 2 LiTi 2 (PO 4 ) 3 Mo 6 S 8 2 -1 E = – 0.059pH -1 2 TiO 2 Li 4 Ti 5 O 12 1 -2 -2 1 Extended practical stability window of aqueous lithium-ion electrolyte 0 -3 -3 0 0 7 14 pH Very recent aqueous lithium-ion battery with highly concentrated electrolyte realized high voltage operation exceeding 1.23 V theoretical stability window.

  5. Aqueous lithium-ion batteries Voltag Discharge capacity Cathode Anode Electrolyte e Ref. /mAh g -1 /V LiMn 2 O 4 VO 2 5 mol/l LiNO 3 aq. 1.5 50 (electrodes) 1 LiNi 0.81 Co 0.19 O 2 LiV 3 O 8 1 mol/l Li 2 SO 4 aq. 0.9 20 (electrodes) 2 LiMn 2 O 4 LiTi 2 (PO 4 ) 3 1 mol/l Li 2 SO 4 aq. 1.5 40 (electrodes) 3 LiFePO 4 LiTi 2 (PO 4 ) 3 1 mol/l Li 2 SO 4 aq. 0.9 55 (electrodes) 4 LiCoO 2 Polyimide 5 mol/l LiNO 3 aq. 1.1 71 (electrodes) 5 LiMn 2 O 4 Mo 6 S 8 21 mol/kg LiTFSI aq. 2.0 47 (electrodes) 6 21 mol/kg LiTFSI LiMn 2 O 4 TiO 2 2.1 48 (electrodes) 7 + 7 mol/kg LiOTf aq. LiCoO 2 2.4 55 (electrodes) 20 mol/kg LiTFSI Li 4 Ti 5 O 12 8 + 8 mol/kg LiBETI aq. LiNi 0.5 Mn 1.5 O 4 3.0 30 (electrodes) Estimated cost of recent aqueous lithium-ion chemistries is still high. [1] W. Li, et al. , Science , 264 (1994) 1115. [2] J. Köhler, et al. , Electrochim. Acta , 46 (2000) 59. [3] J.Y. Luo, et al. , Adv. Funct. Mater. , 17 (2007) 3877. [4] J. Luo, et al. , Nat. Chem. , 2 (2010) 76 [5] H. Qin, et al. , J. Power Sources , 249 (2014) 367. [6] L. Suo, et al. , Science , 350 (2015) 938. [7] L. Suo, et al. , Angew. Chemie. , 85287 (2016) 7136. [8] Y. Yamada, et al. , Nat. Energy , 1 (2016) 16129.

  6. Aqueous sodium-ion batteries *10 M NaClO 4 aq. ≒ 17 m NaClO 4 aq. Voltage Discharge capacity Cathode Anode Electrolyte Ref. /V /mAh g -1 λ -MnO 2 Active Carbon 1 mol/l Na 2 SO 4 aq. 1.2 50 (electrolyte) 9 NaVPO 4 F Polyimide 5 mol/l NaNO 3 aq. 1.1 40 (electrodes) 5 Na 3 V 2 O(PO 4 ) 2 F NaTi 2 (PO 4 ) 3 *10 mol/l NaClO 4 aq. 1.4 40 (cathode) 10 Na 4 Mn 9 O 18 NaTi 2 (PO 4 ) 3 1 mol/l Na 2 SO 4 aq. 1.0 100 (anode) 11 Na 2 FeP 2 O 7 NaTi 2 (PO 4 ) 3 4 mol/l NaClO 4 aq. 0.9 48 (cathode) 12 Na 2 Ni[Fe(CN) 6 ] NaTi 2 (PO 4 ) 3 1 mol/l Na 2 SO 4 aq. 1.3 100 (anode) 13 Na 2 Cu[Fe(CN) 6 ] NaTi 2 (PO 4 ) 3 1 mol/l Na 2 SO 4 aq. 1.4 102 (anode) 14 NaCr[Mn(CN) 6 ] Na 2 Mn[Mn(CN) 6 ] *10 mol/l NaClO 4 aq. 1.0 28 (electrodes) 15 Na 2 Co[Fe(CN) 6 ] NaTi 2 (PO 4 ) 3 1 mol/l Na 2 SO 4 aq. 1.6 120 (cathode) 16 NaFe[Fe(CN) 6 ] (Active Carbon) 1 mol/l Na 2 SO 4 aq. (> 1.5) 60 (cathode) 17 We focus on rocking-chair aqueous sodium-ion batteries (not capacitors). Active materials should be low cost & yield high voltage output to maximize the cost performance index. [9] J.F. Whitacre, et al. , J. Power Sources , 213 (2012) 255. [10] P.R. Kumar, et al ., Mater. Chem. A , 3 (2015) 6271. [11] W. Wu, et al ., J. Electrochem. Soc., 162 (2015) A803. [12] K. Nakamoto, et al ., J. Power Sources , 327 (2016) 327. [13] X. Wu, et al ., Electrochem. Commun., 31 (2013) 145. [14] X. Wu, et al ., ChemSusChem , 7 (2014) 407. [15] M. Pasta, et al ., Nat. Commun., 5 (2014) 3007. [16] X. Wu, et al ., ChemNanoMat., 1 (2015) 188. [17] X. Wu, et al ., Nano Energy , 13 (2015) 117.

  7. Sodium metal hexacyanoferrates Na 2 M[Fe(CN) 6 ], M = Ni, Cu, Fe, Co, Mn M Ni Cu Co Fe E[V] vs. Ag/AgCl After Wu [13] After Wu [14] After Wu [16] After Wu [17] 1.0 O 2 ↑ 0.5 0.0 150 Capacity [mAh/g] Capacity [mAh/g] 150 0 Capacity [mAh/g] 150 150 Capacity [mAh/g] Initial C/D capacity 74/65 71/59 142/128 102/122 /mAh g -1 E/V vs. 0.9 1.0 0.5 0.6 0.4 0.2 Ag/AgCl Electrolyte 1 mol/l Na 2 SO 4 aq. 1 mol/l Na 2 SO 4 aq. 1 mol/l Na 2 SO 4 aq. 1 mol/l Na 2 SO 4 aq. Upper Inactive Inactive [Fe(CN) 6 ] 4-/3- Fe 2+/3+ redox Lower [Fe(CN) 6 ] 4-/3- [Fe(CN) 6 ] 4-/3- Co 2+/3+ [Fe(CN) 6 ] 4-/3- redox Weak Low capacity Low capacity Low initial capacity Expensive Expensive Expensive Air-stability point Na 2 Mn[Fe(CN) 6 ] is low cost and was reported high voltage operation in non-aqueous electrolyte but has never been realized in aqueous electrolyte.

  8. Sodium metal hexacyanoferrates Na 2 M[Fe(CN) 6 ], M = Ni, Cu, Fe, Co, Mn M Mn (in Non-aq.) Co (in Aq.) Fe (in Aq.) E [V] vs. Ag/AgCl E [V] vs. Ag/AgCl After Song [18] After Wu [16] After Wu [17] E [V] vs. Na/Na + 1.0 1.0 4.0 O 2 ↑ 0.5 0.5 3.5 3.0 0.0 0.0 0 0 100 50 0 50 150 100 50 100 150 Capacity [mAh/g] Capacity [mAh/g] Capacity [mAh/g] After Song [18] After Wu [17] After Wu [16] Morph. Round particle Cubic Cubic Property with defects without defects without defects Na 2 Mn[Fe(CN) 6 ] is attractive because of 2 redox-active sites. However, the round particles with defects may dissolve and cannot suppress water decomposition in diluted electrolyte. → Other methods should be considered as suppressing dissolution and water decomposition.

  9. Electrolyte selection for aqueous sodium-ion battery Cation Approx. saturated Weak points Ref. concentration [mol/kg] Li + Na + Cl - 18 6 Anodic oxidation & gas evolution - OH - 5 32 Prussian blue decomposition in alkali 19 NO 3 - 13 10 Ti based NASICON corrosion 11 SO 4 2- 3 2 Low solubility - Anion N(SO 2 CF 3 ) 2 - 21 9 High cost TFSI - 6 SO 2 CF 3 - 22 9 High cost OTf - 7 N(SO 2 C 2 F 5 ) 2 - ND ND High cost BETI - 8 17 ClO 4 - 6 17 Explosive - Highly concentrated NaClO 4 aqueous electrolyte will suppress dissolution or side reaction and support high voltage operation. Cathode Electrolyte Anode Na 2 Mn[Fe(CN) 6 ] NaTi 2 (PO 4 ) 3 17 mol/kg NaClO 4 aq. (NMHCF) (NTP) [6] L. Suo, et al. , Science , 350 (2015) 938. [7] L. Suo, et al. , Angew. Chemie. , 85287 (2016) 7136. [8] Y. Yamada, et al. , Nat. Energy , 1 (2016) 16129. [11] W. Wu, et al ., J. Electrochem. Soc., 162 (2015) A803. [19] R. Koncki, et al. , Anal. Chem. , 70 (1998) 2544.

  10. Experiment

  11. Synthesis of Na x Mn[Fe(CN) 6 ] y ・ zH 2 O Conventional co-precipitation method [18] Na 4 [Fe(CN) 6 ] aq. NaCl aq. Stir (in H 2 O + EtOH) @ RT MnCl 2 aq. Filter & Wash (H 2 O + EtOH) Light green precipitation Vacuum dry @100 ℃ (over night) Green blue Na x Mn[Fe(CN) 6 ] y ・ zH 2 O Green blue Na x Mn[Fe(CN) 6 ] y ・ zH 2 O [18] J. Song, et al., J. Am. Chem. Soc ., 137 (2015) 2658.

  12. Morphological & structural properties of NMHCF XRD SEM As-prepared NMHCF Intensity/a. u. [20] 200 nm Na 2 MnFe(CN) 6 By ICP-AES & TGA Pm-3m Cubic (100) ICSD #75-4637 (110) (200) Na Mn Fe H 2 O (210) (300) (310) (211) (220) 1.24 1 0.81 1.28 10 20 30 40 50 60 Na 1.24 Mn[Fe(CN) 6 ] 0.81 · 1.28H 2 O 2 θ / degree NMHCF powder was identified as cubic with Pm-3m diffraction pattern consistent with Na 2 Mn[Fe(CN) 6 ]. Approx. 200 nm sized round particles not nano-cubes were observed. [20] Y. Morimoto, et al., Energies , 8 (2015) 9486.

  13. Electrochemical cell (AB : Acetylene black, PTFE : Polytetrafluoroethylene) Working electrode Electrolyte Reference electrode Counter electrode (WE) (EL) (RE) (CE) Na 2 Mn[Fe(CN) 6 ] : AB : PTFE 1 or 17 mol/kg Silver-silver chloride NaTi 2 (PO 4 ) 3 : AB : PTFE = 70 : 25 : 5 (wt%) NaClO 4 aq. (Ag/AgCl) in sat. KCl aq. = 70 : 25 : 5 (wt%) RE WE CE Ti mesh Ti mesh WE pellet CE pellet (~ 2 mg) (~ 3 mg) Prussian blue analogues [21] NASICON-type Na 2 Mn[Fe(CN) 6 ] NMHCF NaTi 2 (PO 4 ) 3 NTP EL Sodium manganese hexacyanoferrate Sodium titanium phosphate Beaker-type cell Na 2 MnFe(CN) 6 //NaTi 2 (PO 4 ) 3 Ion-type cell Na 2 Mn[Fe(CN) 6 ] + NaTi 2 (PO 4 ) 3 ⇄ Mn[Fe(CN) 6 ] + Na 3 Ti 2 (PO 4 ) 3 [21] T. Tojo, et al., Electrochem. Acta , 207 (2016) 22.

  14. Result & discussion

  15. Cyclic voltammetry on Ti current collector & active materials Voltage/V vs. Na/Na + 1 2 3 4 1 2 3 4 0.5 0.5 1 mol/kg NaClO 4 17 mol/kg NaClO 4 aq. aq. Practical Practical O 2 Current/mA 2.7 V 1.9 V O 2 ↑ ↑ 0.0 0.0 H 2 H 2 ↑ ↑ Theoretical Theoretical 1.23 V pH = 7 1.23 V pH = 6 -0.5 -0.5 1 mol/kg NaClO 4 17 mol/kg NaClO 4 aq. 2 2 aq. Current density/A g -1 NMHCF O 2 1 NMHCF 1 ↑ 0 0 H 2 ↑ -1 -1 NTP NTP -2 -2 -2 -1 0 1 2 -2 -1 0 1 2 Voltage/V vs. Ag/AgCl 1 & 17 mol/kg NaClO 4 aqueous electrolyte had 1.9 V & 2.7 V practical stability windows, respectively. The windows were larger than 1.23 V theoretical stability window of water.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend