eaca 2014 xiv encuentro de lgebra computacional y
play

EACA 2014 XIV Encuentro de lgebra Computacional y Aplicaciones - PowerPoint PPT Presentation

EACA 2014 XIV Encuentro de lgebra Computacional y Aplicaciones Barcelona June 1820 2014 http://www.ub.edu/eaca2014/ Carlos DAndrea Moving surfaces ideals of rational parametrizations Moving surfaces ideals of rational parametrizations


  1. EACA 2014 XIV Encuentro de Álgebra Computacional y Aplicaciones Barcelona June 18–20 2014 http://www.ub.edu/eaca2014/ Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  2. Moving surfaces ideals of rational parametrizations Carlos D’Andrea Computer Algebra and Polynomials Linz – November 2013 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  3. Episode 1 : Curves Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  4. Rational Plane Curves P 1 P 2 φ : → ( t 0 : t 1 ) �→ ( a ( t 0 , t 1 ) : b ( t 0 , t 1 ) : c ( t 0 , t 1 )) a , b , c ∈ K [ T 0 , T 1 ] , homogeneous of the same degree d ≥ 1 gcd ( a , b , c ) = 1 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  5. Rational Plane Curves The image of the map is a rational plane curve It has degree d if φ is injective “almost everywhere” It has genus 0, which means “maximal” number of multiple points ( d − 1 )( d − 2 ) 2 Computing the “implicit equation” is relatively easy from φ Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  6. From affine to projective K 2 K ��� � � 1 − t 2 2 t t �− → 1 + t 2 , 1 + t 2 P 1 P 2 φ : − → � t 2 0 + t 2 1 : t 2 0 − t 2 � ( t 0 : t 1 ) �− → 1 : 2 t 0 t 1 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  7. From parametric to implicit � � Res T X 2 · a ( T ) − X 0 · c ( T ) , X 2 · b ( T ) − X 1 · c ( T ) = − 4 X 2 2 ( X 2 0 − X 2 1 − X 2 2 ) Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  8. The Sylvester Resultant X 2 T 2 0 − 2 X 0 T 0 T 1 + X 2 T 2 X 2 a ( T ) − X 0 c ( T ) = 1 X 2 T 2 0 − 2 X 1 T 0 T 1 − X 2 T 2 X 2 b ( T ) − X 1 c ( T ) = 1 � � Res T X 2 · a ( T ) − X 0 · c ( T ) , X 2 · b ( T ) − X 1 · c ( T ) =   X 2 − 2 X 0 X 2 0 0 − 2 X 0 X 2 X 2   det   − 2 X 1 − X 2 0 X 2   0 − 2 X 1 − X 2 X 2 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  9. The Sylvester matrix is a matrix of moving lines L ( T 0 , T 1 , X 0 , X 1 , X 2 ) = v 0 ( T ) X 0 + v 1 ( T ) X 1 + v 2 ( T ) X 2 such that L ( T 0 , T 1 , u 0 ( T ) , u 1 ( T ) , u 2 ( T )) = 0 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  10. In our example... L 1 ( T , X ) = − 2 T 2 0 T 1 X 0 + 0 X 1 + ( T 3 0 + T 0 T 2 1 ) X 2 L 2 ( T , X ) = − 2 T 0 T 2 1 X 0 + 0 X 1 + ( T 2 0 T 1 + T 3 1 ) X 2 0 X 0 − 2 T 2 0 T 1 X 1 + ( T 3 0 − T 0 T 2 L 3 ( T , X ) = 1 ) X 2 0 X 0 − 2 T 0 T 2 1 X 1 + ( T 2 0 T 1 − T 3 L 4 ( T , X ) = 1 ) X 2   X 2 − 2 X 0 X 2 0 0 X 2 − 2 X 0 X 2     X 2 − 2 X 1 − X 2 0   0 X 2 − 2 X 1 − X 2 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  11. Can you do it in degree 1 ? L 1 ( T , X ) = T 0 − ( X 0 + X 1 ) T 1 X 2 L 2 ( T , X ) = ( − X 0 + X 1 ) T 0 + X 2 T 1 � X 2 � − X 0 − X 1 = X 2 1 + X 2 2 − X 2 det 0 − X 0 + X 1 X 2 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  12. The module of moving lines following φ (Hilbert) There are µ ≤ d 2 and P µ ( T , X ) , Q d − µ ( T , X ) independent moving lines following φ such that every other moving line L δ ( T , X ) following φ is of the form p δ − µ ( T ) P µ ( T , X ) + q δ − d + µ ( T ) P d − µ ( T , X ) Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  13. Geometric version There exist µ ≤ d 2 and two other plane parametrizations ϕ µ ( t 0 , t 1 ) , ψ d − µ ( t 0 , t 1 ) of degrees µ, d − µ such that φ ( t 0 , t 1 ) = ϕ µ ( t 0 , t 1 ) ∧ ψ d − µ ( t 0 , t 1 ) Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  14. For the unit circle ϕ 1 ( t 0 : t 1 ) = ( − t 1 : − t 1 : t 0 ) ψ 1 ( t 0 : t 1 ) = ( − t 0 : t 0 : t 1 ) � � e 0 e 1 e 2 � � � � � − t 2 0 − t 2 1 , t 2 1 − t 2 � − t 1 − t 1 t 0 = 0 , − 2 t 0 t 1 � � � � − t 0 t 0 t 1 � � Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  15. µ bases and Hilbert’s Syzygy Theorem The homogeneous polynomial ideal � � I = a ( T ) , b ( T ) , c ( T ) ⊂ K [ T 0 , T 1 ] has a Hilbert-Burch resolution of the type 0 → K [ T ] 2 ( ϕ µ ,ψ d − µ ) t K [ T ] 3 ( a , b , c ) − → − → K [ T ] A µ basis of the parametrization is a basis of Syz ( I ) as a K [ T ] -module Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  16. Why do we care about µ bases? Implicit equation = � � Res T P µ ( T , X ) , Q d − µ ( T , X ) Busé-D (2012) If B denotes a Bézout matrix and S a Sylvester matrix then, X 2 S ( P µ ( T , X ) , Q d − µ ( T , X )) = M B ( aX 2 − cX 0 , bX 2 − cX 1 ) , with M ∈ K d × d invertible Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  17. A bit of history on the CAGD side Sederberg, Saito, Qi, Klimaszewski. (1994), Curve implicitization using moving lines , Computer Aided Geometric Design 11, 687–706 Sederberg, Chen. Implicitization using moving curves and surfaces. Proceedings of SIGGRAPH 1995, 301–308. Sederberg, Goldman, Du. (1997), Implicitizing rational curves by the method of moving algebraic curves, J. Symbolic Comp. 23, 153–175 Cox., Sederberg, Chen. (1998), The moving line ideal basis for planar rational curves , Computer Aided Geometric Design 15, 803–827 · · · Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  18. Moving conics, Moving cubics,... a j ( T ) X 2 0 + b j ( T ) X 0 X 1 + c j ( T ) X 0 X 2 + d j ( T ) X 2 1 + e j ( T ) X 1 X 2 + f j ( T ) X 2 2 is a moving conic which follows the parametrization if a j ( T ) a ( T ) 2 + b j ( T ) a ( T ) b ( T ) + c j ( T ) a ( T ) c ( T ) + d j ( T ) b ( T ) 2 + e j ( T ) b ( T ) c ( T ) + f j ( T ) c ( T ) 2 = 0 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  19. The method of moving curves for implicitization The implicit equation may be computed as a small determinant of � � some moving lines � � � � some moving conics � � � � some moving cubics � � � � · · · � � the more singular the curve is, the smaller the determinant is Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  20. One of those theorems (Sederberg & Chen 1995) The implicit equation of a quartic curve with no base points can be written as a 2 × 2 determinant. If the curve doesn’t have a triple point, then each element of the determinant is a quadratic; otherwise one row is linear and one row is cubic Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  21. A quartic with triple point φ ( t 0 , t 1 ) = ( t 4 0 − t 4 1 : − t 2 0 t 2 1 : t 0 t 3 1 ) F ( X 0 , X 1 , X 2 ) = X 4 2 − X 4 1 − X 0 X 1 X 2 2 L 1 , 1 ( T , X ) = T 0 X 2 + T 1 X 1 L 1 , 3 ( T , X ) = T 0 ( X 3 1 + X 0 X 2 2 ) + T 1 X 3 2 � � X 2 X 1 X 3 1 + X 0 X 2 X 3 2 2 Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  22. A quartic without a triple point φ ( t 0 : t 1 ) = ( t 4 0 : 6 t 2 0 t 2 1 − 4 t 4 1 : 4 t 3 0 t 1 − 4 t 0 t 3 1 ) F ( X ) = X 4 2 + 4 X 0 X 3 1 + 2 X 0 X 1 X 2 2 − 16 X 2 0 X 2 1 − 6 X 2 0 X 2 2 + 16 X 3 0 X 1 T 0 ( X 1 X 2 − X 0 X 2 ) + T 1 ( − X 2 2 − 2 X 0 X 1 + 4 X 2 L 1 , 2 ( T , X ) = 0 ) ˜ T 0 ( X 2 1 + 1 2 X 2 L 1 , 2 ( T , X ) = 2 − 2 X 0 X 1 ) + T 1 ( X 0 X 2 − X 1 X 2 ) Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  23. For large d , we do not know... � � which moving lines? � � � � which moving conics? � � � � which moving cubics? � � � � · · · � � Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  24. The Rees Algebra associated to the parametrization Cox, D. The moving curve ideal and the Rees algebra. Theoret. Comput. Sci. 392 (2008), no. 1–3, 23–36. K φ := { moving curves following φ } = kernel of K [ T 0 , T 1 , X 0 , X 1 , X 2 ] → K [ T 0 , T 1 , s ] T i �→ T i X 0 �→ a ( T ) s X 1 �→ b ( T ) s X 2 �→ c ( T ) s “The defining ideal of the Rees Algebra associated to φ ” Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  25. The implicit equation may be obtained as the determinant of a very small matrix: � � · · · � � � � some minimal generators of K φ � � � � · · · � � The more singular the curve, the simpler the description of K φ Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  26. Main Problem Compute a minimal set of generators of K φ for any φ Known for: µ = 1 (Hong-Simis-Vasconcelos, Cox-Hoffmann-Wang, Busé, Cortadellas- D ) µ = 2(Busé, Cortadellas- D , Kustin-Polini-Ulrich) � � K φ ( 1 , 2 ) � = 0 (Cortadellas- D ) Monomial plane parametrizations (Cortadellas- D ) Carlos D’Andrea Moving surfaces ideals of rational parametrizations

  27. Coarse problem Compute n 0 ( K φ ) , the number of minimal generators of K φ Show that if φ is “more singular” than φ ′ then n 0 ( K φ ) ≤ n 0 ( K φ ′ ) Carlos D’Andrea Moving surfaces ideals of rational parametrizations

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend