on determinants as functors
play

On determinants (as functors) Fernando Muro Universitat de - PowerPoint PPT Presentation

On determinants (as functors) Fernando Muro Universitat de Barcelona Dept. lgebra i Geometria V Seminar on Categories and Applications Pontevedra, September 2008 Fernando Muro On determinants (as functors) Categorification of determinants


  1. On determinants (as functors) Fernando Muro Universitat de Barcelona Dept. Àlgebra i Geometria V Seminar on Categories and Applications Pontevedra, September 2008 Fernando Muro On determinants (as functors)

  2. Categorification of determinants From Wikipedia : “In mathematics, categorification refers to the process of replacing set-theoretic theorems by category-theoretic analogues.” Crane–Yetter, Examples of categorification , Cahiers de Topologie et Géometrie Différentielle Catégoriques 39 (1998), no. 1, 3–25. Knudsen–Mumford, The projectivity of the moduli space of stable curves I . Math. Scand. 39 (1976), no. 1, 19–55. Deligne, Le déterminant de la cohomologie , Contemp. Math. 67 (1987), 93–177. Fernando Muro On determinants (as functors)

  3. Categorification of determinants From Wikipedia : “In mathematics, categorification refers to the process of replacing set-theoretic theorems by category-theoretic analogues.” Crane–Yetter, Examples of categorification , Cahiers de Topologie et Géometrie Différentielle Catégoriques 39 (1998), no. 1, 3–25. Knudsen–Mumford, The projectivity of the moduli space of stable curves I . Math. Scand. 39 (1976), no. 1, 19–55. Deligne, Le déterminant de la cohomologie , Contemp. Math. 67 (1987), 93–177. Fernando Muro On determinants (as functors)

  4. Categorification of determinants From Wikipedia : “In mathematics, categorification refers to the process of replacing set-theoretic theorems by category-theoretic analogues.” Crane–Yetter, Examples of categorification , Cahiers de Topologie et Géometrie Différentielle Catégoriques 39 (1998), no. 1, 3–25. Knudsen–Mumford, The projectivity of the moduli space of stable curves I . Math. Scand. 39 (1976), no. 1, 19–55. Deligne, Le déterminant de la cohomologie , Contemp. Math. 67 (1987), 93–177. Fernando Muro On determinants (as functors)

  5. Categorification of determinants f : k n → k n homomorphism n × n matrix M � If k = R , | det ( M ) | is the scale factor for f . Let ω = e 1 ∧ · · · ∧ e n ∈ ∧ n k n be the volume form, ∧ n f : ∧ n k n ∧ n k n , − → det ( M ) ω. ω �→ Fernando Muro On determinants (as functors)

  6. Categorification of determinants f : k n → k n homomorphism n × n matrix M � If k = R , | det ( M ) | is the scale factor for f . Let ω = e 1 ∧ · · · ∧ e n ∈ ∧ n k n be the volume form, ∧ n f : ∧ n k n ∧ n k n , − → det ( M ) ω. ω �→ Fernando Muro On determinants (as functors)

  7. Categorification of determinants f : k n → k n homomorphism n × n matrix M � If k = R , | det ( M ) | is the scale factor for f . Let ω = e 1 ∧ · · · ∧ e n ∈ ∧ n k n be the volume form, ∧ n f : ∧ n k n ∧ n k n , − → det ( M ) ω. ω �→ Fernando Muro On determinants (as functors)

  8. Categorification of determinants f : k n → k n homomorphism n × n matrix M � If k = R , | det ( M ) | is the scale factor for f . Let ω = e 1 ∧ · · · ∧ e n ∈ ∧ n k n be the volume form, ∧ n f : ∧ n k n ∧ n k n , − → det ( M ) ω. ω �→ Fernando Muro On determinants (as functors)

  9. Categorification of determinants For any f. d. vector space A and any isomorphism f : A ∼ → B we set ( ∧ dim A A , dim A ) , det ( A ) = ∧ dim A f , det ( f ) = in the category lines Z of graded lines: Objects ( L , n ) are given by L a vector space of dim = 1 and n ∈ Z . Morphisms ( L , n ) → ( L ′ , n ′ ) are isomorphisms L → L ′ if n = n ′ and ∅ otherwise. The functor det : vect iso − → lines Z categorifies determinants. Fernando Muro On determinants (as functors)

  10. Categorification of determinants For any f. d. vector space A and any isomorphism f : A ∼ → B we set ( ∧ dim A A , dim A ) , det ( A ) = ∧ dim A f , det ( f ) = in the category lines Z of graded lines: Objects ( L , n ) are given by L a vector space of dim = 1 and n ∈ Z . Morphisms ( L , n ) → ( L ′ , n ′ ) are isomorphisms L → L ′ if n = n ′ and ∅ otherwise. The functor det : vect iso − → lines Z categorifies determinants. Fernando Muro On determinants (as functors)

  11. Categorification of determinants For any f. d. vector space A and any isomorphism f : A ∼ → B we set ( ∧ dim A A , dim A ) , det ( A ) = ∧ dim A f , det ( f ) = in the category lines Z of graded lines: Objects ( L , n ) are given by L a vector space of dim = 1 and n ∈ Z . Morphisms ( L , n ) → ( L ′ , n ′ ) are isomorphisms L → L ′ if n = n ′ and ∅ otherwise. The functor det : vect iso − → lines Z categorifies determinants. Fernando Muro On determinants (as functors)

  12. Categorification of determinants For any f. d. vector space A and any isomorphism f : A ∼ → B we set ( ∧ dim A A , dim A ) , det ( A ) = ∧ dim A f , det ( f ) = in the category lines Z of graded lines: Objects ( L , n ) are given by L a vector space of dim = 1 and n ∈ Z . Morphisms ( L , n ) → ( L ′ , n ′ ) are isomorphisms L → L ′ if n = n ′ and ∅ otherwise. The functor det : vect iso − → lines Z categorifies determinants. Fernando Muro On determinants (as functors)

  13. Categorification of determinants The functor det satisfies further properties. The category lines Z is a Picard groupoid, i.e. a symmetric categorical group, with tensor product ( L , n ) ⊗ ( L ′ , n ′ ) ( L ⊗ L ′ , n + n ′ ) , = and commutativity constraint twisted by a sign comm. ( L , n ) ⊗ ( L ′ , n ′ ) ( L ′ , n ′ ) ⊗ ( L , n ) , − → ( − 1 ) nn ′ w ⊗ v . v ⊗ w �→ Fernando Muro On determinants (as functors)

  14. Categorification of determinants Given a s. e. s. p i ∆ = A ֌ B ։ B / A we have an additivity isomorphism det (∆): det ( B / A ) ⊗ det ( A ) − → det ( B ) defined as follows. Choose bases { v 1 , . . . , v p } of B / A and { w 1 , . . . , w q } of A , and set det (∆) v ′ 1 ∧ · · · ∧ v ′ ( v 1 ∧ · · · ∧ v p ) ⊗ ( w 1 ∧ · · · ∧ w q ) �→ p ∧ i ( w 1 ) ∧ · · · ∧ i ( w q ) , where p ( v ′ r ) = v r . Fernando Muro On determinants (as functors)

  15. Categorification of determinants Given a s. e. s. p i ∆ = A ֌ B ։ B / A we have an additivity isomorphism det (∆): det ( B / A ) ⊗ det ( A ) − → det ( B ) defined as follows. Choose bases { v 1 , . . . , v p } of B / A and { w 1 , . . . , w q } of A , and set det (∆) v ′ 1 ∧ · · · ∧ v ′ ( v 1 ∧ · · · ∧ v p ) ⊗ ( w 1 ∧ · · · ∧ w q ) �→ p ∧ i ( w 1 ) ∧ · · · ∧ i ( w q ) , where p ( v ′ r ) = v r . Fernando Muro On determinants (as functors)

  16. Categorification of determinants � � � � � � Additivity isomorphisms are natural with respect to s. e. s. isomorphisms, det (∆) � � B � � B / A det ( B / A ) ⊗ det ( A ) det ( B ) A � det ( h ) ⊗ det ( f ) det ( g ) ∼ f ∼ g ∼ h � � det ( B ′ ) � B ′ � � B ′ / A ′ det ( B ′ / A ′ ) ⊗ det ( A ′ ) det (∆ ′ ) A ′ Fernando Muro On determinants (as functors)

  17. Categorification of determinants � � � � They are associative, i.e. for each 2-step filtration A ֌ B ֌ C the following diagram commutes det ( C ) � ���������������� � � � � det ( B ֌ C ։ C / B ) det ( A ֌ C ։ C / A ) � � � � � � � � � � � det ( C / B ) ⊗ det ( B ) det ( C / A ) ⊗ det ( A ) 1 ⊗ det ( A ֌ B ։ B / A ) det ( B / A ֌ C / A ։ C / B ) ⊗ 1 det ( C / B ) ⊗ ( det ( B / A ) ⊗ det ( A )) � ( det ( C / B ) ⊗ det ( B / A )) ⊗ det ( A ) assoc. of ⊗ Fernando Muro On determinants (as functors)

  18. Categorification of determinants � � They are commutative, i.e. the following diagram commutes det ( A ⊕ B ) � ���������������� � � � � det ( B ֌ A ⊕ B ։ A ) det ( A ֌ A ⊕ B ։ B ) � � � � � � � � � � � � det ( B ) ⊗ det ( A ) det ( A ) ⊗ det ( B ) comm. of ⊗ Fernando Muro On determinants (as functors)

  19. Determinant for exact categories What’s special about det above? lines Z is a Picard groupoid, vect has short exact sequences. Definition (Deligne’87) Let E be an abelian or exact category and P a Picard groupoid. A determinant is a functor det : E iso − → P together with an additivity isomorphism det (∆): det ( B / A ) ⊗ det ( A ) − → det ( B ) for each s. e. s. ∆ = A ֌ B ։ B / A in E satisfying naturality, associativity and commutativity. Fernando Muro On determinants (as functors)

  20. Determinant for exact categories What’s special about det above? lines Z is a Picard groupoid, vect has short exact sequences. Definition (Deligne’87) Let E be an abelian or exact category and P a Picard groupoid. A determinant is a functor det : E iso − → P together with an additivity isomorphism det (∆): det ( B / A ) ⊗ det ( A ) − → det ( B ) for each s. e. s. ∆ = A ֌ B ։ B / A in E satisfying naturality, associativity and commutativity. Fernando Muro On determinants (as functors)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend