associativity preassociativity and string functions
play

Associativity, preassociativity, and string functions Erkko Lehtonen - PowerPoint PPT Presentation

Associativity, preassociativity, and string functions Erkko Lehtonen Centro de lgebra da Universidade de Lisboa Departamento de Matemtica, Faculdade de Cincias, Universidade de Lisboa erkko@campus.ul.pt joint work with Jean-Luc Marichal


  1. Associativity, preassociativity, and string functions Erkko Lehtonen Centro de Álgebra da Universidade de Lisboa Departamento de Matemática, Faculdade de Ciências, Universidade de Lisboa erkko@campus.ul.pt joint work with Jean-Luc Marichal (University of Luxembourg) Bruno Teheux (University of Luxembourg) AAA88 Warsaw, 20–22 June 2014 E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 1 / 18

  2. Associative functions Let X be a nonempty set. F : X 2 → X is associative if F ( F ( a , b ) , c ) = F ( a , F ( b , c )) . on X = R F ( a , b ) = a + b Examples: on a semilattice X F ( a , b ) = a ∧ b E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 2 / 18

  3. Associative functions F ( F ( a , b ) , c ) = F ( a , F ( b , c )) . E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 3 / 18

  4. Associative functions Extension to 3 -ary functions F ( F ( a , b ) , c ) = F ( a , F ( b , c )) . F ( F ( a , b , c ) , d , e ) = F ( a , F ( b , c , d ) , e ) = F ( a , b , F ( c , d , e )) E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 3 / 18

  5. Associative functions Extension to n -ary functions F ( F ( a , b ) , c ) = F ( a , F ( b , c )) . F ( F ( a , b , c ) , d , e ) = F ( a , F ( b , c , d ) , e ) = F ( a , b , F ( c , d , e )) F : X n → X is associative if F ( F ( a 1 , . . . , a n ) , a n + 1 , . . . , a 2 n − 1 ) = F ( a 1 , F ( a 2 , . . . , a n + 1 ) , a n + 2 , . . . , a 2 n − 1 ) = · · · = F ( a 1 , . . . , a i , F ( a i + 1 , . . . , a i + n ) , a i + n + 1 , . . . , a 2 n − 1 ) = · · · = F ( a 1 , . . . , a n − 1 , F ( a n , . . . , a 2 n − 1 )) . E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 3 / 18

  6. Associative functions with indefinite arity Let X ∗ = � X n . n ∈ N Disclaimer: When we write F : X ∗ → X , we mean a map X n → X � F : n ≥ 1 that is extended into a map X ∗ → X ∪ { ε } by setting F ( ε ) = ε. E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 4 / 18

  7. Associative functions with indefinite arity Let X ∗ = � X n . n ∈ N F : X ∗ → X is associative if F ( x 1 , . . . , x p , y 1 , . . . , y q , z 1 , . . . , z r ) = F ( x 1 , . . . , x p , F ( y 1 , . . . , y q ) , z 1 , . . . , z r ) . on X = R F ( x 1 , . . . , x n ) = x 1 + · · · + x n Examples: on a semilattice X F ( x 1 , . . . , x n ) = x 1 ∧ · · · ∧ x n E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 4 / 18

  8. Notation We regard n -tuples x ∈ X n as n-strings over X . 0-string: ε 1-strings: x , y , z , . . . n -strings: x , y , z , . . . X ∗ is endowed with concatenation. x y z ∈ X n + 1 + m x ∈ X n , y ∈ X , z ∈ X m Example: = ⇒ | x | = length of x F ( x ) = ε ⇐ ⇒ x = ε E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 5 / 18

  9. Associative functions with indefinite arity F : X ∗ → X is associative if ∀ x , y , z ∈ X ∗ . F ( xyz ) = F ( x F ( y ) z ) E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 6 / 18

  10. Associative functions with indefinite arity F : X ∗ → X is associative if ∀ x , y , z ∈ X ∗ . F ( xyz ) = F ( x F ( y ) z ) Equivalent definitions ∀ x , y , z ∈ X ∗ . F ( F ( xy ) z ) = F ( x F ( yz )) ∀ x , y ∈ X ∗ . F ( xy ) = F ( F ( xy )) E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 6 / 18

  11. Associative functions with indefinite arity F : X ∗ → X is associative if ∀ x , y , z ∈ X ∗ . F ( xyz ) = F ( x F ( y ) z ) Theorem (Marichal, Teheux) We can assume that | xz | ≤ 1 in the definition above. That is, F : X ∗ → X is associative if and only if F ( y ) = F ( F ( y )) F ( x y ) = F ( xF ( y )) F ( y z ) = F ( F ( y ) z ) E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 6 / 18

  12. Associative functions with indefinite arity F n = F | X n n ≥ 2 F n ( x 1 · · · x n ) = F 2 ( F n − 1 ( x 1 · · · x n − 1 ) x n ) Thus, associative functions are completely determined by their unary and binary parts. Theorem (Marichal) Let F : X ∗ → X and G : X ∗ → X be two associative functions such that F 1 = G 1 and F 2 = G 2 . Then F = G. E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 7 / 18

  13. Preassociative functions Let Y be a nonempty set. F : X ∗ → Y is preassociative if F ( y ) = F ( y ′ ) F ( xyz ) = F ( xy ′ z ) = ⇒ and F ( x ) = F ( ε ) ⇐ ⇒ x = ε. E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 8 / 18

  14. Preassociative functions Let Y be a nonempty set. F : X ∗ → Y is string-preassociative if F ( y ) = F ( y ′ ) F ( xyz ) = F ( xy ′ z ) . = ⇒ E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 8 / 18

  15. Preassociative functions F : X ∗ → Y is preassociative if F ( y ) = F ( y ′ ) F ( xyz ) = F ( xy ′ z ) = ⇒ and F ( x ) = F ( ε ) ⇐ ⇒ x = ε. F ( x ) = x 2 1 + · · · + x 2 ( X = Y = R ) Examples: n ( X arbitrary, Y = N ) F ( x ) = | x | E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 9 / 18

  16. Preassociative functions F : X ∗ → Y is preassociative if F ( y ) = F ( y ′ ) F ( xyz ) = F ( xy ′ z ) = ⇒ and F ( x ) = F ( ε ) ⇐ ⇒ x = ε. Fact: If F : X ∗ → X is associative, then it is preassociative. Proof. Suppose F ( y ) = F ( y ′ ) . Then F ( xyz ) = F ( x F ( y ) z ) = F ( x F ( y ′ ) z ) = F ( xy ′ z ) . The second condition holds by definition. E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 9 / 18

  17. Preassociative functions F : X ∗ → Y is preassociative if F ( y ) = F ( y ′ ) F ( xyz ) = F ( xy ′ z ) = ⇒ and F ( x ) = F ( ε ) ⇐ ⇒ x = ε. Proposition (Marichal, Teheux) F : X ∗ → X is associative if and only if it is preassociative and F 1 ( F ( x )) = F ( x ) . Proof. (Necessity) Clear. (Sufficiency) We have F ( y ) = F ( F ( y )) . Hence, by preassociativity, F ( xyz ) = F ( x F ( y ) z ) . E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 9 / 18

  18. Preassociative functions Proposition (Marichal, Teheux) If F : X ∗ → Y is preassociative, then so is the function x 1 · · · x n �→ F n ( g ( x 1 ) · · · g ( x n )) for every function g : X → X. F n ( x ) = x 6 1 + · · · + x 6 ( X = Y = R ) Example: n E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 10 / 18

  19. Preassociative functions Proposition (Marichal, Teheux) If F : X ∗ → Y is preassociative, then so is g ◦ F for every function g : Y → Y such that g | Im F is injective. F n ( x ) = exp ( x 6 1 + · · · + x 6 ( X = Y = R ) Example: n ) E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 10 / 18

  20. String functions A string function is a map F : X ∗ → X ∗ . F : X ∗ → X ∗ is associative if F ( xyz ) = F ( x F ( y ) z ) and F ( x ) = F ( ε ) ⇐ ⇒ x = ε. (the same formula as before!) E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 11 / 18

  21. String functions A string function is a map F : X ∗ → X ∗ . F : X ∗ → X ∗ is string-associative if F ( xyz ) = F ( x F ( y ) z ) . (the same formula as before!) E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 11 / 18

  22. Associative string functions Examples: identity function sorting data in alphabetical order F ( mathematics ) = aacehimmstt F ( warszawa ) = aaarswwz removing occurrences of a given letter, say, of a F ( mathematics ) = mthemtics F ( warszawa ) = wrszw removing duplicates, keeping only the first occurrence of each letter F ( mathematics ) = matheics F ( warszawa ) = warsz E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 12 / 18

  23. Associative string functions Examples: identity function sorting data in alphabetical order F ( mathematics ) = aacehimmstt F ( warszawa ) = aaarswwz removing occurrences of a given letter, say, of a F ( mathematics ) = mthemtics string-associative not associative F ( warszawa ) = wrszw F ( aaa ) = ε = F ( ε ) removing duplicates, keeping only the first occurrence of each letter F ( mathematics ) = matheics F ( warszawa ) = warsz E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 12 / 18

  24. Associative string functions F : X ∗ → X ∗ is string-associative if F ( xyz ) = F ( x F ( y ) z ) . Proposition Assume F : X ∗ → X ∗ satisfies F ( ε ) = ε . The following are equivalent: F is string-associative. 1 F ( x F ( y ) z ) = F ( x ′ F ( y ′ ) z ′ ) for all x , y , z , x ′ , y ′ , z ′ ∈ X ∗ such that 2 xyz = x ′ y ′ z ′ . F ( F ( xy ) z ) = F ( x F ( yz )) for all x , y , z ∈ X ∗ . 3 F ( xy ) = F ( F ( x ) F ( y )) for all x , y ∈ X ∗ . 4 E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 13 / 18

  25. Associative string functions F : X ∗ → X ∗ is string-associative if F ( xyz ) = F ( x F ( y ) z ) . Proposition F : X ∗ → X ∗ is string-associative if and only if F ( xyz ) = F ( x F ( y ) z ) for any x , y , z ∈ X ∗ such that | xy | ≤ 1 . E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 13 / 18

  26. Associative string functions F : X ∗ → X ∗ is string-associative if F ( xyz ) = F ( x F ( y ) z ) . Fact A string-associative function F : X ∗ → X ∗ satisfies n ≥ 1 , F ( x 1 · · · x n ) = F ( F ( x 1 · · · x n − 1 ) x n ) , or, equivalently, n ≥ 1 . F ( x 1 · · · x n ) = F ( F ( · · · F ( F ( x 1 ) x 2 ) · · · ) x n ) , E. Lehtonen (CAUL) Associativity, preassociativity, . . . AAA88 13 / 18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend