dynamique s de descente pour l optimisation multi objectif
play

Dynamique(s) de descente pour loptimisation multi-objectif - PowerPoint PPT Presentation

Dynamique(s) de descente pour loptimisation multi-objectif Guillaume Garrigos Istituto Italiano di Tecnologia & Massachusetts Institute of Technology Genova, Italie Journes SMAI-MODE 24 Mars, 2016 Journes SMAI-MODE 2016 - Toulouse


  1. Dynamique(s) de descente pour l’optimisation multi-objectif Guillaume Garrigos Istituto Italiano di Tecnologia & Massachusetts Institute of Technology Genova, Italie Journées SMAI-MODE 24 Mars, 2016 Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 1/20

  2. Introduction/Motivation Multi-objective problem In engineering, decision sciences, it happens that various objective → R functions shall be minimized simultaneously: f 1 , ..., f m : H − Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 2/20

  3. Introduction/Motivation Multi-objective problem In engineering, decision sciences, it happens that various objective → R functions shall be minimized simultaneously: f 1 , ..., f m : H − − → Needs appropriate tools: multi-objective optimization. Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 2/20

  4. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz, H Hilbert. Solve MIN ( f 1 ( x ) , ..., f m ( x )) : x ∈ C ⊂ H convex. Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 3/20

  5. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz, H Hilbert. Solve MIN ( f 1 ( x ) , ..., f m ( x )) : x ∈ C ⊂ H convex. We consider the usual order(s) on R m : a ĺ b ⇔ a i ≤ b i for all i = 1 , ..., m , a ă b ⇔ a i < b i for all i = 1 , ..., m . Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 3/20

  6. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz, H Hilbert. Solve MIN ( f 1 ( x ) , ..., f m ( x )) : x ∈ C ⊂ H convex. We consider the usual order(s) on R m : a ĺ b ⇔ a i ≤ b i for all i = 1 , ..., m , a ă b ⇔ a i < b i for all i = 1 , ..., m . x is a Pareto point if ∄ y ∈ C such that F ( y ) ň F ( x ) x is a weak Pareto point if ∄ y ∈ C such that F ( y ) ă F ( x ) Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 3/20

  7. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz. Solve MIN f 1 ( x ) , ..., f m ( x ) : x ∈ C ⊂ H convex. How to solve it? Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 4/20

  8. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz. Solve MIN f 1 ( x ) , ..., f m ( x ) : x ∈ C ⊂ H convex. How to solve it? genetic algorithm − → no theoretical guarantees. Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 4/20

  9. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz. Solve MIN f 1 ( x ) , ..., f m ( x ) : x ∈ C ⊂ H convex. How to solve it? genetic algorithm − → no theoretical guarantees. scalarization method: � argmin f θ ( x ) ⊂ { weak Paretos } ⊂ { Paretos } , x ∈ H θ ∈ ∆ m m where ∆ m is the simplex unit and f θ ( x ) := � θ i f i ( x ) . i = 1 Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 4/20

  10. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz. Solve MIN f 1 ( x ) , ..., f m ( x ) : x ∈ C ⊂ H convex. We are going to present a method which: Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 4/20

  11. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz. Solve MIN f 1 ( x ) , ..., f m ( x ) : x ∈ C ⊂ H convex. We are going to present a method which: generalizes the gradient descent dynamic ˙ x ( t ) + ∇ f ( x ( t )) = 0, Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 4/20

  12. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz. Solve MIN f 1 ( x ) , ..., f m ( x ) : x ∈ C ⊂ H convex. We are going to present a method which: generalizes the gradient descent dynamic ˙ x ( t ) + ∇ f ( x ( t )) = 0, is cooperative , i.e. all objective functions decrease simultaneously, Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 4/20

  13. The multi-objective optimization problem Let F = ( f 1 , ..., f m ) : H → R m locally Lipschitz. Solve MIN f 1 ( x ) , ..., f m ( x ) : x ∈ C ⊂ H convex. We are going to present a method which: generalizes the gradient descent dynamic ˙ x ( t ) + ∇ f ( x ( t )) = 0, is cooperative , i.e. all objective functions decrease simultaneously, is independent of any choice of parameters. Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 4/20

  14. Towards a descent dynamic for multi-objective optimization Single objective optimization: x n + 1 = x n + λ n d n , where d n satisfies df ( x n ; d n ) < 0 (e.g. d n = −∇ f ( x n ) ). Multi-objective optimization: Can we find d n such that df i ( x n ; d n ) < 0 for all i ∈ { 1 , ..., m } ? Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 5/20

  15. Towards a descent dynamic for multi-objective optimization Historical review Cornet (1981) ∇ f 2 ( x ) ∇ f 1 ( x ) � s ( x ) , ∇ f i ( x ) � < 0 s ( x ) := − [ ∇ f 1 ( x ) , ∇ f 2 ( x )] 0 PhD defense - Guillaume Garrigos 28/30

  16. Multi-objective steepest descent → R m locally Lipschitz, C = H Hilbert. Let F = ( f 1 , ..., f m ) : H − Definition For all x ∈ H , s ( x ) := − ( co { ∂ C f i ( x ) } i = 1 ,..., m ) 0 is the (common) steepest descent direction at x . Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 6/20

  17. Multi-objective steepest descent → R m locally Lipschitz, C = H Hilbert. Let F = ( f 1 , ..., f m ) : H − Definition For all x ∈ H , s ( x ) := − ( co { ∂ C f i ( x ) } i = 1 ,..., m ) 0 is the (common) steepest descent direction at x . Remarks in the smooth case If m = 1 then s ( x ) = −∇ f 1 ( x ) . Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 6/20

  18. Multi-objective steepest descent → R m locally Lipschitz, C = H Hilbert. Let F = ( f 1 , ..., f m ) : H − Definition For all x ∈ H , s ( x ) := − ( co { ∂ C f i ( x ) } i = 1 ,..., m ) 0 is the (common) steepest descent direction at x . Remarks in the smooth case If m = 1 then s ( x ) = −∇ f 1 ( x ) . At each x , s ( x ) selects a convex combination: m m � � s ( x ) = − θ i ( x ) ∇ f i ( x ) = −∇ f θ ( x ) ( x ) where f θ ( x ) = θ i ( x ) f i . i = 1 i = 1 Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 6/20

  19. Multi-objective steepest descent → R m locally Lipschitz, C = H Hilbert. Let F = ( f 1 , ..., f m ) : H − Definition For all x ∈ H , s ( x ) := − ( co { ∂ C f i ( x ) } i = 1 ,..., m ) 0 is the (common) steepest descent direction at x . Remarks in the smooth case If m = 1 then s ( x ) = −∇ f 1 ( x ) . At each x , s ( x ) selects a convex combination: m m � � s ( x ) = − θ i ( x ) ∇ f i ( x ) = −∇ f θ ( x ) ( x ) where f θ ( x ) = θ i ( x ) f i . i = 1 i = 1 s ( x ) is the steepest descent: � � s ( x ) � s ( x ) � = argmin i = 1 ,..., m �∇ f i ( x ) , d � max . d ∈ B H Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 6/20

  20. The (multi-objective) Steepest Descent dynamic Algorithm: x n + 1 = x n + λ n s ( x n ) . Studied in the 2000’s by Svaiter, Fliege, Iusem, ... Continuous dynamic: (SD) x ( t ) = s ( x ( t )) , ˙ x ( t ) + ( co { ∂ C f i ( x ( t )) } i ) 0 = 0 i.e. (SD) ˙ Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 7/20

  21. The (multi-objective) Steepest Descent dynamic Example x ( t ) = s ( x ( t )) with f 1 ( x ) = � x � 2 and f 2 ( x ) = x 1 . (SD) ˙ Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 8/20

  22. The (multi-objective) Steepest Descent dynamic Example x ( t ) = s ( x ( t )) with f 1 ( x ) = � x � 2 and f 2 ( x ) = x 1 . (SD) ˙ Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 8/20

  23. The (multi-objective) Steepest Descent dynamic Example f 1 ( x ) = � x � 2 and f 2 ( x ) = x 1 . (SD) x ( t ) = s ( x ( t )) with ˙ Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 8/20

  24. The (multi-objective) Steepest Descent dynamic Example f 1 ( x ) = � x � 2 and f 2 ( x ) = x 1 . (SD) x ( t ) = s ( x ( t )) with ˙ Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 8/20

  25. The (multi-objective) Steepest Descent dynamic Example f 1 ( x ) = � x � 2 and f 2 ( x ) = x 1 . (SD) x ( t ) = s ( x ( t )) with ˙ Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 8/20

  26. The (multi-objective) Steepest Descent dynamic Example f 1 ( x ) = � x � 2 and f 2 ( x ) = x 1 . (SD) x ( t ) = s ( x ( t )) with ˙ Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 8/20

  27. The (multi-objective) Steepest Descent dynamic Example x ( t ) = s ( x ( t )) with f 1 ( x ) = x 2 1 and f 2 ( x ) = x 2 (SD) ˙ 2 . Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 9/20

  28. The (multi-objective) Steepest Descent dynamic Example x ( t ) = s ( x ( t )) with f 1 ( x ) = x 2 1 and f 2 ( x ) = x 2 (SD) ˙ 2 . Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 9/20

  29. The (multi-objective) Steepest Descent dynamic Example x ( t ) = s ( x ( t )) with f 1 ( x ) = x 2 1 and f 2 ( x ) = x 2 (SD) ˙ 2 . Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 9/20

  30. The (multi-objective) Steepest Descent dynamic Main results (Attouch, G., Goudou, 2014) A cooperative dynamic Let x : R + − → H be a solution of (SD) ˙ x ( t ) = s ( x ( t )) . For all i = 1 , ..., m , the function t �→ f i ( x ( · )) is decreasing. Journées SMAI-MODE 2016 - Toulouse - Guillaume Garrigos 10/20

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend