e xploration de donn
play

E XPLORATION DE DONN EES POUR L OPTIMISATION DE TRAJECTOIRES A - PowerPoint PPT Presentation

E XPLORATION DE DONN EES POUR L OPTIMISATION DE TRAJECTOIRES A ERIENNES C edric Rommel Directeurs de th` ese: Fr ed eric Bonnans, Pierre Martinon Encadrant Safety Line: Baptiste Gregorutti Soutenance de th` ese, 26 octobre


  1. P HYSICAL MODELS OF NESTED FUNCTIONS  T ( ① , ✉ , θ T ) = N 1 × P T ( ρ , M ) = X T · θ T      D ( ① , ✉ , θ D ) = q × P D ( α , M ) = X D · θ D L ( ① , ✉ , θ L ) = q × P L ( α , M ) = X L · θ L      I sp ( ① , ✉ , θ Isp ) = SAT × P Isp ( h , M ) = X Isp · θ Isp       1 1 1 h ρ α             M M M             ρ 2 α 2 h 2       X T = N 1 , X D = X L = q , X Isp = SAT .       ρ M α M hM             M 2 M 2 M 2             . . . . . . . . . 13/49

  2. S TATE - OF - THE - ART - [J ATEGAONKAR , 2006] Output-Error Method Filter-Error Method 14/49

  3. S TATE - OF - THE - ART - [J ATEGAONKAR , 2006] � Output-Error Method Less scalable to many trajectories Filter-Error Method 14/49

  4. S TATE - OF - THE - ART - [J ATEGAONKAR , 2006] � Output-Error Method Less scalable to many trajectories Filter-Error Method Equation-Error Method ① ( t ) = g ( ✉ ( t ) , ① ( t ) , θ ) + ε ( t ) , ˙ t ∈ [ 0, t f ] 14/49

  5. S TATE - OF - THE - ART - [J ATEGAONKAR , 2006] � Output-Error Method Less scalable to many trajectories Filter-Error Method Equation-Error Method ① i = g ( ✉ i , ① i , θ ) + ε i , ˙ i = 1, . . . , N 14/49

  6. S TATE - OF - THE - ART - [J ATEGAONKAR , 2006] � Output-Error Method Less scalable to many trajectories Filter-Error Method Equation-Error Method N � � ∑ ① i , g ( ✉ i , ① i , θ ) min ℓ ˙ θ i = 1 14/49

  7. S TATE - OF - THE - ART - [J ATEGAONKAR , 2006] � Output-Error Method Less scalable to many trajectories Filter-Error Method Equation-Error Method Ex: (Nonlinear) Least-Squares N � � 2 ∑ � � ① i − g ( ✉ i , ① i , θ ) min � ˙ � θ 2 i = 1 14/49

  8. S TATE - OF - THE - ART - [J ATEGAONKAR , 2006] � Output-Error Method Less scalable to many trajectories Filter-Error Method Equation-Error Method Ex: (Nonlinear) Least-Squares N � � 2 ∑ � � � Y ( ✉ i , ① i , ˙ ① i ) − G ( ✉ i , ① i , ˙ ① i , θ ) min � θ 2 i = 1 14/49

  9. L EVERAGING THE DYNAMICS STRUCTURE   ˙  h = V sin γ        V = T ( ✉ , ① , θ T ) cos α − D ( ✉ , ① , θ D ) − mg sin γ   ˙   m γ = T ( ✉ , ① , θ T ) sin α + L ( ✉ , ① , θ L ) − mg cos γ   ˙    mV     m = − T ( ✉ , ① , θ T )    ˙  I sp ( ✉ , ① , θ Isp ) 15/49

  10. L EVERAGING THE DYNAMICS STRUCTURE   ˙  h = V sin γ        V = T ( ✉ , ① , θ T ) cos α − D ( ✉ , ① , θ D ) − mg sin γ   ˙   m γ = T ( ✉ , ① , θ T ) sin α + L ( ✉ , ① , θ L ) − mg cos γ   ˙    mV     m = − T ( ✉ , ① , θ T )    ˙  I sp ( ✉ , ① , θ Isp ) Nonlinear in states and controls 15/49

  11. L EVERAGING THE DYNAMICS STRUCTURE   ˙  h = V sin γ        V = T ( ✉ , ① , θ T ) cos α − D ( ✉ , ① , θ D ) − mg sin γ   ˙   m γ = T ( ✉ , ① , θ T ) sin α + L ( ✉ , ① , θ L ) − mg cos γ   ˙    mV     m = − T ( ✉ , ① , θ T )    ˙  I sp ( ✉ , ① , θ Isp ) Nonlinear in states and controls Nonlinear in parameters 15/49

  12. L EVERAGING THE DYNAMICS STRUCTURE    ˙ h = V sin γ          m ˙  V + mg sin γ = T ( ✉ , ① , θ T ) cos α − D ( ✉ , ① , θ D )     mV ˙ γ + mg cos γ = T ( ✉ , ① , θ T ) sin α + L ( ✉ , ① , θ L )          0 = T ( ✉ , ① , θ T ) + ˙ mI sp ( ✉ , ① , θ Isp )  Nonlinear in states and controls Nonlinear in parameters 15/49

  13. L EVERAGING THE DYNAMICS STRUCTURE    ˙ h = V sin γ          m ˙  V + mg sin γ = ( X T · θ T ) cos α − X D · θ D + ε 1     mV ˙ γ + mg cos γ = ( X T · θ T ) sin α + X L · θ L + ε 2          0 = X T · θ T + ˙ m ( X Isp · θ Isp ) + ε 3  mV ˙ γ + mg cos γ = ( X T · θ T ) sin α + X L · θ L + ε 2 � �� � � �� � Y ( ✉ , ① , ˙ ① ) G ( ✉ , ① , ˙ ① , θ ) Nonlinear in states and controls Nonlinear in parameters → Linear in parameters 15/49

  14. L EVERAGING THE DYNAMICS STRUCTURE    ˙ h = V sin γ          m ˙  V + mg sin γ = ( X T · θ T ) cos α − X D · θ D + ε 1     mV ˙ γ + mg cos γ = ( X T · θ T ) sin α + X L · θ L + ε 2          0 = X T · θ T + ˙ m ( X Isp · θ Isp ) + ε 3  mV ˙ γ + mg cos γ = ( X T · θ T ) sin α + X L · θ L + ε 2 � �� � � �� � Y ( ✉ , ① , ˙ ① ) G ( ✉ , ① , ˙ ① , θ ) Nonlinear in states and controls Nonlinear in parameters → Linear in parameters 15/49

  15. L EVERAGING THE DYNAMICS STRUCTURE    ˙ h = V sin γ           Y 1 = X T 1 · θ T − X D · θ D + ε 1     Y 2 = X T 2 · θ T + X L · θ L + ε 2          Y 3 = X T · θ T + X Ispm · θ Isp + ε 3  Nonlinear in states and controls Nonlinear in parameters → Linear in parameters 15/49

  16. L EVERAGING THE DYNAMICS STRUCTURE    ˙ h = V sin γ           Y 1 = X T 1 · θ T − X D · θ D + ε 1     Y 2 = X T 2 · θ T + X L · θ L + ε 2          Y 3 = X T · θ T + X Ispm · θ Isp + ε 3  Nonlinear in states and controls Nonlinear in parameters → Linear in parameters Structured Coupling 15/49

  17. L EVERAGING THE DYNAMICS STRUCTURE    ˙ h = V sin γ           Y 1 = X T 1 · θ T − X D · θ D + ε 1     Y 2 = X T 2 · θ T + X L · θ L + ε 2          Y 3 = X T · θ T + X Ispm · θ Isp + ε 3  Nonlinear in states and controls Nonlinear in parameters → Linear in parameters Structured Coupling � Multi-task Learning 15/49

  18. M ULTI - TASK R EGRESSION General: Aircraft:  Y 1 = X c ,1 · θ c + X 1 · θ 1 + ε 1       Y 1 = X T 1 · θ T − X D · θ D + ε 1 Y 2 = X c ,2 · θ c + X 2 · θ 2 + ε 2     . . . . Y 2 = X T 2 · θ T + X L · θ L + ε 2  . .        Y 3 = X T · θ T + X Ispm · θ Isp + ε 3  Y K = X c , K · θ c + X K · θ K + ε K Coupling parameters , Task specific parameters Many other examples: Giant squid neurons [FitzHugh, 1961, Nagumo et al., 1962], Susceptible-infectious-recovered models [Anderson and May, 1992], Mechanical systems ,... 16/49

  19. M ULTI - TASK R EGRESSION General: Aircraft:  Y 1 = X c ,1 · θ c + X 1 · θ 1 + ε 1       Y 1 = X T 1 · θ T − X D · θ D + ε 1 Y 2 = X c ,2 · θ c + X 2 · θ 2 + ε 2     . . . . Y 2 = X T 2 · θ T + X L · θ L + ε 2  . .        Y 3 = X T · θ T + X Ispm · θ Isp + ε 3  Y K = X c , K · θ c + X K · θ K + ε K Coupling parameters , Task specific parameters Multi-task Linear Least-Squares: K N ( Y k , i − X c , k , i · θ c − X k , i · θ k ) 2 ∑ ∑ min θ k = 1 i = 1 16/49

  20. M ULTI - TASK R EGRESSION General: Aircraft:  Y 1 = X c ,1 · θ c + X 1 · θ 1 + ε 1       Y 1 = X T 1 · θ T − X D · θ D + ε 1 Y 2 = X c ,2 · θ c + X 2 · θ 2 + ε 2     . . . . Y 2 = X T 2 · θ T + X L · θ L + ε 2  . .        Y 3 = X T · θ T + X Ispm · θ Isp + ε 3  Y K = X c , K · θ c + X K · θ K + ε K Coupling parameters , Task specific parameters Multi-task Linear Least-Squares: Block-sparse Coupling Structure 2 � �  X ⊤ X ⊤  0 0 . . . 0 � �   c ,1, i 1, i θ c � �   X ⊤ X ⊤ Y 1, i 0 0 0 . . . �   � c ,2, i 2, i N θ 1 �     � . . ... ∑ �       � .  − . min . . . 0 0 0 0 �     �  . θ . �   �   i = 1 Y K , i � �   θ K � � X ⊤ X ⊤ � 0 0 . . . 0 � c , K , i K , i 2 16/49

  21. M ULTI - TASK R EGRESSION General: Aircraft:  Y 1 = X c ,1 · θ c + X 1 · θ 1 + ε 1       Y 1 = X T 1 · θ T − X D · θ D + ε 1 Y 2 = X c ,2 · θ c + X 2 · θ 2 + ε 2     . . . . Y 2 = X T 2 · θ T + X L · θ L + ε 2  . .        Y 3 = X T · θ T + X Ispm · θ Isp + ε 3  Y K = X c , K · θ c + X K · θ K + ε K Coupling parameters , Task specific parameters Multi-task Linear Least-Squares: N � Y i − X i θ � 2 ∑ min 2 θ i = 1 with θ = ( θ c , θ 1 , . . . , θ K ) ∈ R p , p = d c + ∑ K k = 1 d k , Y i ∈ R K and X i ∈ R K × p . 16/49

  22. F EATURE S ELECTION Our model: T = N 1 ( θ T ,1 + θ T ,2 ρ + θ T ,3 M + θ T ,4 ρ 2 + θ T ,5 ρ M + θ T ,6 M 2 + θ T ,7 ρ 3 + θ T ,8 ρ 2 M + θ T ,9 ρ M 2 + θ T ,10 M 3 + θ T ,11 ρ 4 + θ T ,12 ρ 3 M + θ T ,13 ρ 2 M 2 + θ T ,14 ρ M 3 + θ T ,15 M 4 ) . Mattingly’s model [Mattingly et al., 1992]: T = N 1 ( θ T ,1 ρ + θ T ,2 ρ M 3 ) . 17/49

  23. F EATURE S ELECTION Our model: T = N 1 ( θ T ,1 + θ T ,2 ρ + θ T ,3 M + θ T ,4 ρ 2 + θ T ,5 ρ M + θ T ,6 M 2 + θ T ,7 ρ 3 + θ T ,8 ρ 2 M + θ T ,9 ρ M 2 + θ T ,10 M 3 + θ T ,11 ρ 4 + θ T ,12 ρ 3 M + θ T ,13 ρ 2 M 2 + θ T ,14 ρ M 3 + θ T ,15 M 4 ) . Mattingly’s model [Mattingly et al., 1992]: T = N 1 ( θ T ,1 ρ + θ T ,2 ρ M 3 ) . ⇒ High risk of overfitting 17/49

  24. F EATURE S ELECTION Our (sparse) model: T = N 1 ( θ T ,1 + θ T ,2 ρ + θ T ,3 M + θ T ,4 ρ 2 + θ T ,5 ρ M + θ T ,6 M 2 + θ T ,7 ρ 3 + θ T ,8 ρ 2 M + θ T ,9 ρ M 2 + θ T ,10 M 3 + θ T ,11 ρ 4 + θ T ,12 ρ 3 M + θ T ,13 ρ 2 M 2 + θ T ,14 ρ M 3 + θ T ,15 M 4 ) . Mattingly’s model [Mattingly et al., 1992]: T = N 1 ( θ T ,1 ρ + θ T ,2 ρ M 3 ) . ⇒ High risk of overfitting 17/49

  25. F EATURE S ELECTION Our (sparse) model: T = N 1 ( θ T ,1 + θ T ,2 ρ + θ T ,3 M + θ T ,4 ρ 2 + θ T ,5 ρ M + θ T ,6 M 2 + θ T ,7 ρ 3 + θ T ,8 ρ 2 M + θ T ,9 ρ M 2 + θ T ,10 M 3 + θ T ,11 ρ 4 + θ T ,12 ρ 3 M + θ T ,13 ρ 2 M 2 + θ T ,14 ρ M 3 + θ T ,15 M 4 ) . Mattingly’s model [Mattingly et al., 1992]: T = N 1 ( θ T ,1 ρ + θ T ,2 ρ M 3 ) . Sparse models are: Less susceptible to overfitting, More compliant with physical models, More interpretable, Lighter/Faster. 17/49

  26. B LOCK - SPARSE L ASSO i = 1 ⊂ R d + 1 i.i.d sample, { ( X i , Y i ) } N Lasso [Tibshirani, 1994]: N ( Y i − X i · θ ) 2 + λ � θ � 1 . ∑ min θ i = 1 F IGURE : 1 Sparsity induced by L 1 norm in Lasso. Source : Wikipedia, Lasso(statistics) 18/49

  27. B LOCK - SPARSE L ASSO Block-sparse structure preserved K N K ( Y k , i − X c , k , i · θ c − X k , i · θ k ) 2 + λ c � θ c � 1 + ∑ ∑ ∑ min λ k � θ k � 1 θ k = 1 i = 1 k = 1 18/49

  28. B LOCK - SPARSE L ASSO Block-sparse structure preserved � Equivalent to Lasso problem K N K ( Y k , i − X c , k , i · θ c − X k , i · θ k ) 2 + λ c � θ c � 1 + ∑ ∑ ∑ λ k � θ k � 1 min θ k = 1 i = 1 k = 1 18/49

  29. B LOCK - SPARSE L ASSO Block-sparse structure preserved � Equivalent to Lasso problem N � Y i − B i β � 2 ∑ 2 + λ c � β � 1 min β i = 1 with β = ( θ c , λ 1 λ c θ 1 , . . . , λ K λ c θ K ) ∈ R p , p = d c + ∑ K k = 1 d k , Y i ∈ R K and B i ∈ R K × p . 18/49

  30. B LOCK - SPARSE L ASSO Block-sparse structure preserved � Equivalent to Lasso problem N � Y i − X i θ � 2 ∑ 2 + λ c � θ � 1 min θ i = 1 with θ = ( θ c , λ 1 λ c θ 1 , . . . , λ K λ c θ K ) ∈ R p , p = d c + ∑ K k = 1 d k , Y i ∈ R K and X i ∈ R K × p , In practice, we choose λ k = λ c , for all k = 1, . . . , 3 and     X ⊤ − X ⊤ 0 0 Y 1, i T 1, i D , i X ⊤ X ⊤  , X i = 0 0 Y i = Y 2, i    T 2, i L , i X ⊤ X ⊤ 0 0 Y 3, i T , i Ispm , i 18/49

  31. B OOTSTRAP IMPLEMENTATION High correlations between features... 19/49

  32. B OOTSTRAP IMPLEMENTATION High correlations between features... ⇒ Inconsistent selections via the lasso ! 19/49

  33. B OOTSTRAP IMPLEMENTATION High correlations between features... ⇒ Inconsistent selections via the lasso ! Bolasso - Bach [2008] i = 1 ⊂ R K × ( K + 1 ) × R K , training data T = { ( X i , Y i ) } N Require: number of bootstrap replicates b , L 1 penalty parameter λ c , 1: for k = 1 to b do Generate bootstrap sample T k , 2: θ k from T k , Compute Block sparse Lasso estimate ˆ 3: Compute support J k = { j , ˆ θ k j � = 0 } , 4: 5: end for 6: Compute intersection J = � b k = 1 J k , 7: Compute ˆ θ J from selected features using Least-Squares. 19/49

  34. B OOTSTRAP IMPLEMENTATION High correlations between features... ⇒ Inconsistent selections via the lasso ! Bolasso - Bach [2008] i = 1 ⊂ R K × ( K + 1 ) × R K , training data T = { ( X i , Y i ) } N Require: number of bootstrap replicates b , L 1 penalty parameter λ c , 1: for k = 1 to b do Generate bootstrap sample T k , 2: θ k from T k , Compute Block sparse Lasso estimate ˆ 3: Compute support J k = { j , ˆ θ k j � = 0 } , 4: 5: end for 6: Compute intersection J = � b k = 1 J k , 7: Compute ˆ θ J from selected features using Least-Squares. Consistency even under high correlations proved in Bach [2008], 19/49

  35. B OOTSTRAP IMPLEMENTATION High correlations between features... ⇒ Inconsistent selections via the lasso ! Bolasso - Bach [2008] i = 1 ⊂ R K × ( K + 1 ) × R K , training data T = { ( X i , Y i ) } N Require: number of bootstrap replicates b , L 1 penalty parameter λ c , 1: for k = 1 to b do Generate bootstrap sample T k , 2: θ k from T k , Compute Block sparse Lasso estimate ˆ 3: Compute support J k = { j , ˆ θ k j � = 0 } , 4: 5: end for 6: Compute intersection J = � b k = 1 J k , 7: Compute ˆ θ J from selected features using Least-Squares. Consistency even under high correlations proved in Bach [2008], Efficient implementations exist: LARS [Efron et al., 2004]. 19/49

  36. P ROBLEM WITH INTRA - GROUP CORRELATIONS N ∑ � Y i − X i θ � 2 2 + λ c � θ � 1 ⇒ ˆ θ ❚ = ˆ min θ ■s♣ = 0 ! θ i = 1 20/49

  37. P ROBLEM WITH INTRA - GROUP CORRELATIONS N ∑ � Y i − X i θ � 2 2 + λ c � θ � 1 ⇒ ˆ θ ❚ = ˆ min θ ■s♣ = 0 ! θ i = 1  Y 1 = X T 1 · θ T − X D · θ D + ε 1   Y 2 = X T 2 · θ T + X L · θ L + ε 2   0 = X T · θ T + X Ispm · θ Isp + ε 3 20/49

  38. P ROBLEM WITH INTRA - GROUP CORRELATIONS F IGURE : Features correlations higher than 0.9 in absolute value in white. 21/49

  39. P ROBLEM WITH INTRA - GROUP CORRELATIONS ⇒ θ �→ ∑ N i = 1 � Y i − X i θ � 2 2 not injective... Ill-posed problem ! F IGURE : Features correlations higher than 0.9 in absolute value in white. 21/49

  40. P ROBLEM WITH INTRA - GROUP CORRELATIONS  Y 1 = X T 1 · θ T − X D · θ D + ε 1     Y 2 = X T 2 · θ T + X L · θ L + ε 2 0 = X T · θ T + X Ispm · θ Isp + ε 3     λ t ˜ I sp = λ t X Isp · θ Isp + ε 4 N � Y i − X i θ � 2 ∑ 2 + λ c � θ � 1 min θ i = 1 Prior model ˜ I sp from Roux [2005] � ˜ I sp , i = ˜ I sp ( ✉ i , ① i ) , i = 1, . . . , N . 22/49

  41. P ROBLEM WITH INTRA - GROUP CORRELATIONS  Y 1 = X T 1 · θ T − X D · θ D + ε 1     Y 2 = X T 2 · θ T + X L · θ L + ε 2 0 = X T · θ T + X Ispm · θ Isp + ε 3     λ t ˜ I sp = λ t X Isp · θ Isp + ε 4 N � � � Y i − X i θ � 2 I sp , i − X Isp , i · θ Isp � 2 ∑ 2 + λ t � ˜ + λ c � θ � 1 min 2 θ i = 1 Prior model ˜ I sp from Roux [2005] � ˜ I sp , i = ˜ I sp ( ✉ i , ① i ) , i = 1, . . . , N . 22/49

  42. P ROBLEM WITH INTRA - GROUP CORRELATIONS  Y 1 = X T 1 · θ T − X D · θ D + ε 1     = X T 2 · θ T + X L · θ L + ε 2 Y 2 0 = X T · θ T + X Ispm · θ Isp + ε 3   √ I sp = √   λ t ˜ λ t X Isp · θ Isp + ε 4 N � � � Y i − X i θ � 2 I sp , i − X Isp , i · θ Isp � 2 ∑ 2 + λ t � ˜ + λ c � θ � 1 min 2 θ i = 1 Prior model ˜ I sp from Roux [2005] � ˜ I sp , i = ˜ I sp ( ✉ i , ① i ) , i = 1, . . . , N . 22/49

  43. P ROBLEM WITH INTRA - GROUP CORRELATIONS  Y 1 = X T 1 · θ T − X D · θ D + ε 1     = X T 2 · θ T + X L · θ L + ε 2 Y 2 0 = X T · θ T + X Ispm · θ Isp + ε 3   √ I sp = √   λ t ˜ λ t X Isp · θ Isp + ε 4 N X i θ � 2 ∑ � ˜ Y i − ˜ 2 + λ c � θ � 1 min θ i = 1     X ⊤ T 1, i − X ⊤ Y 1, i 0 0 D , i X ⊤ X ⊤  Y 2, i   0 0  ˜ ˜ T 2, i L , i     Y i =  , X i =  ,    X ⊤ X ⊤  0 0 0   T , i Ispm , i √ √ λ t ˜ λ t X ⊤ I sp , i 0 0 0 Isp , i Prior model ˜ I sp from Roux [2005] � ˜ I sp , i = ˜ I sp ( ✉ i , ① i ) , i = 1, . . . , N . 22/49

  44. F EATURE SELECTION RESULTS 25 different B737-800, 10 471 flights = 8 261 619 observations, 23/49

  45. F EATURE SELECTION RESULTS 25 different B737-800, 10 471 flights = 8 261 619 observations, Block sparse Bolasso used for T , D , L and I sp , We expect similar model structures, 23/49

  46. F EATURE SELECTION RESULTS Feature selection results for the thrust, drag, lift and specific impulse models. 23/49

  47. A CCURACY OF DYNAMICS PREDICTIONS 24/49

  48. R EALISM OF HIDDEN ELEMENTS 25/49

  49. ✉ ✉ ① ① ✉ ① ① ✉ ① ① ✉ ✉ ① F LIGHT RESIMULATION 26/49

  50. ✉ ✉ ① ① ✉ ① ① ✉ ① ① ✉ ✉ ① F LIGHT RESIMULATION Last assessment criterion = static; 26/49

  51. ✉ ✉ ① ① ✉ ① ① ✉ ① ① ✉ ✉ ① F LIGHT RESIMULATION Last assessment criterion = static; Does not incorporate the fact that the observations are time dependent; 26/49

  52. ✉ ✉ ① ① ✉ ① ① ✉ ① ① ✉ ✉ ① F LIGHT RESIMULATION Last assessment criterion = static; Does not incorporate the fact that the observations are time dependent; Does not take into account the goal of optimally controlling the aircraft system. 26/49

  53. F LIGHT RESIMULATION Last assessment criterion = static; Does not incorporate the fact that the observations are time dependent; Does not take into account the goal of optimally controlling the aircraft system. Another possible dynamic criterion: � t n � � ✉ ( t ) − ✉ test ( t ) � 2 � ✉ + � ① ( t ) − ① test ( t ) � 2 min dt ① ( ① , ✉ ) t 0 ① ( t ) = g ( ① ( t ) , ✉ ( t ) , ˆ θ ) , s.t. ˙ where � · � ✉ , � · � ① denote scaling norms. 26/49

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend