distan ances an ces and infor ormation g geom eometry y a
play

Distan ances an ces and infor ormation g geom eometry: y: A A - PowerPoint PPT Presentation

Recen ent c con ontribut utions ons to Distan ances an ces and infor ormation g geom eometry: y: A A compu putational onal v viewpoi oint Frank Nielsen Sony Computer Science Laboratories, Inc https://franknielsen.github.io/ 31


  1. Recen ent c con ontribut utions ons to Distan ances an ces and infor ormation g geom eometry: y: A A compu putational onal v viewpoi oint Frank Nielsen Sony Computer Science Laboratories, Inc https://franknielsen.github.io/ 31 st July 2020

  2. Outlin line 1. Siegel-Klein geometry (bounded complex matrix domains) Hilbert geometry of the Siegel disk: The Siegel-Klein disk model https://arxiv.org/abs/2004.08160 2. Information-geometric structures on the Cauchy manifold On Voronoi Diagrams on the Information-Geometric Cauchy Manifolds Entropy 2020, 22(7), 713; https://doi.org/10.3390/e22070713 https://www.mdpi.com/1099-4300/22/7/713 3. Generalizations of the Jensen-Shannon divergence & JS centroids On the Jensen–Shannon Symmetrization of Distances Relying on Abstract Means Entropy 2019, 21(5), 485; https://doi.org/10.3390/e21050485 https://www.mdpi.com/1099-4300/21/5/485 On a Generalization of the Jensen–Shannon Divergence and the Jensen–Shannon Centroid Entropy 2020, 22(2), 221; https://doi.org/10.3390/e22020221 https://www.mdpi.com/1099-4300/22/2/221

  3. Hilbert g geom ometry of of the S Sieg egel di disk: The S e Siegel el-Klein di disk mod odel Frank Nielsen Sony Computer Science Laboratories, Inc https://franknielsen.github.io/ https://arxiv.org/abs/2004.08160 July 2020

  4. Main s n standa ndard mod odel els of of h hyper erbolic g c geom eometry Conformal Poincaré model: Hyperbolic Voronoi diagram Metric tensor (Tissot indicatrix) Lesser known non-conformal Klein model: Hyperbolic Voronoi diagram Straight geodesics Hyperbolic Voronoi diagrams in 5 models https://www.youtube.com/watch?v=i9IUzNxeH4o&t=3s Hyperbolic Voronoi diagrams made easy, IEEE ICCSA 2010

  5. Si Sieg egel up upper er s spa pace Birth of symplectic geometry (complex matrix groups, Siegel & Hua, 1940’s) Generalization of the Poincaré upper plane to complex matrix domains : PD: Positive-definite cone Infinitesimal length element: Geodesic length distance: Spectral decomposition with the i-th real eigenvalue Matrix cross-ratio : R: Not Hermitian, but all real eigenvalues!

  6. Sieg Si egel up upper er s spa pace: e: Gener eneralize e PD matrix c con one PD: Positive-definite cone Si Sieg egel up upper er s spa pace: e: Gener eneralize e Poi oincaré up upper er p plane When complex dimension is 1, recover the Poincaré upper plane several equivalent formulas…

  7. Gener eneralized l linea ear f fractional t trans nsformations Siegel upper space metric is invariant under generalized Moebius transformations called (biholomorphic) symplectic maps : (matrix group representation) Real symplectic group Sp(d,R) : Group inverse: (translation Z=A+iB) Group action is transitive : ( → homogeneous space)

  8. Orien entation on-pr pres eser erving isometry i in t the S e Sieg egel el u upper per s space Stabilizer group of Z=iI: The symplectic orthogonal matrices: (informally, play the role of “rotations” in the Siegel geometry) Orientation preserving isometry : PSL(2,R) When complex dimension is 1 (Poincaré upper plane), recover PSL(2,R)

  9. Sieg Si egel di disk dom domain Partial Loewner ordering Disk domain: PSL(2,R) Or equivalently A generalization of Poincaré conformal disk: Spectral/operator norm : PSL(2,R) (= Maximum singular value >=0) Siegel disk domain: Shilov boundary PSL(2,R) Stratified space (by matrix rank )

  10. Distanc nce e in t n the he Si Sieg egel el di disk domain Siegel metric PSL(2,R) in the disk domain: When complex dimension is 1, recover the Poincaré disk metric: Siegel disk distance: PSL(2,R) Siegel translation of W1 to the origin matrix 0 (= Siegel translation): Costly to calculate because we need square root and inverse matrices

  11. Complex sym ymplecti tic gr group (for Si Sieg egel el di disk) Equivalent to Orientation-preserving isometry in the Siegel disk: PSL(2,C) in 1D

  12. Con Conver ersions Si Sieg egel el up upper er spa pace e <-> > Si Sieg egel el di disk Moebius transformations (generalized linear fractional transformations)

  13. Som Some a e app pplications of of Si Sieg egel el symplect ectic geomet etry Radar signal processing: • Frederic Barbaresco. Information geometry of covariance matrix: Cartan-Siegel homogeneous bounded domains, • Mostow/Berger bration and Frechet median. In Matrix information geometry, pages 199-255. Springer, 2013. Ben Jeuris and Raf Vandebril. The Kahler mean of block-Toeplitz matrices with Toeplitz structured blocks. • SIAM Journal on Matrix Analysis and Applications, 37(3):1151-1175, 2016. Congwen Liu and Jiajia Si. Positive Toeplitz operators on the Bergman spaces of the Siegel upper half-space. • Communications in Mathematics and Statistics, pages 1-22, 2019. Image processing: • Reiner Lenz. Siegel descriptors for image processing . IEEE Signal Processing Letters, 23(5):625-628, 2016. Statistics: • Miquel Calvo and Josep M Oller. A distance between elliptical distributions based in an embedding into the Siegel group . • Journal of Computational and Applied Mathematics, 145(2):319-334, 2002. Emmanuel Chevallier, Thibault Forget, Frederic Barbaresco, and Jesus Angulo. Kernel density estimation on the Siegel • space with an application to radar processing . Entropy, 18(11):396, 2016.

  14. Poi oincaré con onformal di disk vs Klein no non-conf nforma mal d disk • Klein disk is non-conformal with geodesics straight Euclidean lines • Klein mode well-suited for computational geometry : Eg., Voronoi diagram Hyperbolic Voronoi diagram Clipped affine diagram (power diagram) Q: What is the equivalent of Klein geometry for the Siegel disk domain?

  15. Hilber ert ( (projec ective) e) g geom eometry Normed vector space Bounded open convex domain Ω Define Hilbert distance : Cross-ratio: Related to Birkhoff geometry on (d+1)-dimensional cones

  16. Rewriting t the he Hilber ert di distance Or equivalently (p,q expressed from linear interpolations of boundary points) :

  17. Si Sieg egel-Klei ein di disk model el Choose constant ½ to match Klein disk geometry In complex dimension 1, recover the Klein disk:

  18. Ca Calculating t g the he Si Sieg egel el-Klei ein di distance nce Line passing through two matrix points: Calculate the two α values on Shilov boundary Siegel-Klein distance: In practice, perform bisection search for the α values…

  19. Special case I Si Sieg egel-Klein n di distance t nce to o the he or origin (zero matri rix 0 0) Solve for and Siegel disk distance: Exact

  20. Special case II Sieg egel el-Klei ein d n distanc nce: e: Line p e passing ng thr hrough t ough the o e origin Line (K1K2) passing through the origin: Exact Siegel-Klein distance:

  21. Special case III Si Sieg egel-Klei ein di distance nce be between een di diagonal m matrices ces Solve d quadratic systems for getting two α values: Siegel-Klein distance: Exact

  22. App pproximating H Hilber ert g geom eometry with nes nested dom ed domains Enough to check in 1D:

  23. Guaranteed eed a approximation o on of the Sieg egel el-Kl Klein d distance

  24. Con Conver erting g Si Sieg egel el-Po Poincaré (W) t to/ o/from Si Sieg egel-Klei ein ( (K) Radial contraction to the origin: Siegel-Klein-> Siegel-Poincaré Radial expansion to the origin: Siegel-Poincaré-> Siegel-Klein-

  25. Si Sieg egel-Klei ein g geod eodes esics cs are e unique E e Euc uclidea ean s straigh ght Follow from the definition of the Hilbert distance and the cross-ratio properties : Main advantage of the Siegel-Klein model is that geodesics are straight Many computational geometric techniques thus apply: For example: Smallest Enclosing Balls, etc.

  26. Geodes eodesics cs i in H Hilber ert g geom eometry may not not be be un unique Hexagonal ball shapes Hilbert simplex geometry (isometric to a normed space) https://www.youtube.com/watch?v=Gz0Vjk5quQE Geodesics in Cayley-Klein geometry are unique. (= Hilbert geometry for ellipsoidal domains ) Hilbert geometry of elliptope (space of correlation matrices) https://franknielsen.github.io/elliptope/index.html Clustering in Hilbert’s projective geometry: The case studies of the probability simplex and the elliptope of correlation matrices

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend