ta2 test case
play

TA2 Test Case Praveen. C 1 R. Duvigneau 2 1 Tata Institute of - PowerPoint PPT Presentation

TA2 Test Case Praveen. C 1 R. Duvigneau 2 1 Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 2 Projet Opale, INRIA Sophia Antipolis Integrated Multiphysics Simulation & Design Optimization Second


  1. TA2 Test Case Praveen. C 1 R. Duvigneau 2 1 Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore 560065 2 Projet Opale, INRIA Sophia Antipolis Integrated Multiphysics Simulation & Design Optimization Second Database Workshop for multiphysics optimization software validation Agora, Jyv¨ asky¨ a, Finland March 10-12, 2010 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 1 / 25

  2. TA2 test case Aerodynamic reconstruction problem Recovery of the original position of two ellipses using Navier-Stokes flows for Re = 100 and Re = 500 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 2 / 25

  3. TA2 test case: Design variables, bounds, target Design parameters: � 10 0 x � 6 5 1 position of the ellipse 1 � 1 5 y 0 0 1 � 10 0 0 0 clockwise angle of the ellipse 1 1 7 25 x 10 0 3 position of the ellipse 3 � 1 5 y 0 0 3 0 0 10 0 clockwise angle of the ellipse 3 3 In addition, the ellipses/ellipsoids must not be overlapping. Target: { x 1 , y 1 , α 1 , x 3 , y 3 , α 3 } = {− 7 . 0 , − 0 . 5 , − 3 . 0 o , 7 . 5 , − 0 . 5 , 3 . 0 o } P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 3 / 25

  4. TA2 test case: Flow conditions • Incompressible fluid (Navier-Stokes laminar flow) Our results are for M ∞ = 0 . 2 • Reynolds number Re = 100 or 500 Our results are for Re = 500 and 1000 • Angle of attack α = 5 deg. Recovery of position by minimizing the pressure difference � � � 1 ) 2 + 2 ) 2 + 3 ) 2 min f = ( p 1 − p ∗ ( p 2 − p ∗ ( p 3 − p ∗ Γ 1 Γ 2 Γ 3 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 4 / 25

  5. Flow solver: flo2d • Finite volume scheme • Unstructured, triangular grids • Roe flux • MUSCL reconstruction • Implicit scheme Source code of flo2d available online http://flo2d.googlecode.com P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 5 / 25

  6. Grid for CFD • x 0 = Design variables corresponding to middle of design space • G 0 = Grid corresponding to x 0 (Reference grid) • To obtain grid for any other configuration, we deform the reference grid using Radial Basis Function interpolation. • Grid points on middle ellipse and outer boundary are fixed • Grid used in this work ◮ 33438 vertices ◮ 65994 triangles • Grid generated using delaundo P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 6 / 25

  7. Grid deformation Initial grid • Interpolate displacement of surface points to interior points using RBF ˜ f ( x, y ) = a 0 + a 1 x + a 2 y + N r j | 2 log | � � b j | � r − � r − � r j | Deformed grid j =1 where r = ( x, y ) � • Results in smooth grids P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 7 / 25

  8. Reference grid P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 8 / 25

  9. Reference grid P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 9 / 25

  10. Reference grid: Around first ellipse P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 10 / 25

  11. Reference and target grid P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 11 / 25

  12. Reference and target grid: B/w first and second ellipse P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 12 / 25

  13. Reference and target grid: B/W first and second ellipse P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 13 / 25

  14. Global metamodel-based optimization • Global models: provide global trends in objective function ◮ Faster convergence towards global optimum • Metamodels are approximate, inaccurate • Not possible to construct accurate metamodel in one-shot • Difficult to construct uniformly accurate model in high dimensions ◮ Curse of dimensionality • Model must be accurate in regions of optima • But need to sufficiently explore the design space • Balance between exploration and exploitation P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 14 / 25

  15. Gaussian process models • Treat results of a computer code as a stochastic process !!! • Provides an estimate of the variance in predicted value 12 10 DACE predictor 8 6 12 4 standard error 10 2 of the predictor 8 0 0 2 4 6 8 10 12 6 4 2 0 0 2 4 6 8 10 12 1 1.5 1.5 2 2.5 2.5 3 3.5 3.5 4 4.5 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 15 / 25

  16. Merit functions • Statistical lower bound f M ( x ) = ˜ J ( x ) − κ ˜ s ( x ) • Probability of improvement � � T − ˜ J ( x ) PoI( x ) = Φ ˜ s ( x ) • Expected improvement u ( x ) = J min − ˜ J ( x ) EI( x ) = ˜ s ( x )[ u Φ( u ) + φ ( u )] , ˜ s ( x ) P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 16 / 25

  17. Minimization of 2-D Branin function: Initial database 15 10 5 0 −5 0 5 10 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 17 / 25

  18. Minimization of 2-D Branin function: after 20 iter 15 10 5 0 −5 0 5 10 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 18 / 25

  19. Optimization test • 6 design variables • Initial database of 48 using LHS • 4 merit functions based on statistical lower bound with κ = 0 , 1 , 2 , 3 • Gaussian process models • Merit functions minimized using PSO P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 19 / 25

  20. Convergence of CFD iterations for target configuration 1 Re = 500 Re = 1000 0.1 0.01 Residual 0.001 0.0001 1e-05 0 5000 10000 15000 20000 25000 30000 Number of iterations P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 20 / 25

  21. Convergence of optimization for Re=500 53 65 0.1 Objective function 77 101 89 113 0.01 125 137 149 161 173 185 197 209 221 233 245 0 10 20 30 40 50 Number of iterations Best objective function value = 6 . 00 × 10 − 3 (normalized) or 1 . 25 × 10 − 4 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 21 / 25

  22. Pressure coefficient for Re = 500 0.6 Target Optimized 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1.2 -1.4 -10 -8 -6 -4 -2 0 2 4 6 8 10 x 1 y 1 α 1 x 3 y 3 α 3 Target -7.5 -0.5 -3.5 7.5 -0.5 3.0 Opt -7.271 -0.541 -3.232 7.494 -0.518 3.120 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 22 / 25

  23. Convergence of optimization for Re=1000 53 65 101 113 125 77 89 Objective function 0.1 137 149 161 173 185 0.01 197 209 221 233 245 0 10 20 30 40 50 Number of iterations Best objective function value = 5 . 09 × 10 − 3 (normalized) or 1 . 06 × 10 − 4 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 23 / 25

  24. Pressure coefficient for Re = 1000 1 Target Optimized 0.5 0 -0.5 -1 -1.5 -10 -5 0 5 10 x 1 y 1 α 1 x 3 y 3 α 3 Target -7.5 -0.5 -3.5 7.5 -0.5 3.0 Opt -6.993 -0.504 -2.675 7.498 -0.497 2.641 P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 24 / 25

  25. Summary • Grid is deformed in smooth way by RBF interpolation. We expect objective function to depend continuously on the design variables. • CFD has good convergence and pressure is smooth on the ellipses • Objective is reduced by 3 orders of magnitude for both Reynolds numbers • But for Re=500, position of first ellipse is not well recovered • Objective function could be insensitive to position of first ellipse. This behaviour has been seen by other presentations in the first workshop. • For Re=1000, position is recovered well but both angles are far off from the target values. But pressure looks quite close to target pressure. • Global optimization methods not able to precisely locate the optimum. Performance could be improved by a trust region approach and/or using some gradient information. P & R (TIFR/INRIA) TA2 Test Case 10-12 March, 2010 25 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend