discontinuous galerkin method for rotating shallow water
play

Discontinuous Galerkin method for rotating shallow water equation on - PowerPoint PPT Presentation

Discontinuous Galerkin method for rotating shallow water equation on the sphere Praveen Chandrashekar praveen@math.tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065, India


  1. Discontinuous Galerkin method for rotating shallow water equation on the sphere Praveen Chandrashekar praveen@math.tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065, India http://cpraveen.github.io International Conference on Recent Advances in Theoretical and Computational PDE with Applications, UIET, Panjab University, 5-9 December 2016 Supported by Airbus Foundation Chair at TIFR-CAM, Bangalore http://math.tifrbng.res.in/airbus-chair 1 / 54

  2. Shallow water model 1 , 2 • Shallow atmosphere/ocean ◮ 3 / 4 of total mass within 11 km ◮ Circumference = 40,000 km • Assumptions ◮ Incompressible flow ◮ Hydrostatic equilibrium in radial direction 1 Pedlosky, Geophysical Fluid Dynamics 2 Vallis, Atmospheric and Oceanic Fluid Dynamics 2 / 54

  3. Rotation, spherical coordinates Fig. 2.3 The spherical coordinate sys- tem. The orthogonal unit vectors i , j and k point in the direction of in- creasing longitude λ , latitude ϑ , and altitude z . Locally, one may apply a Cartesian system with variables x , y and z measuring distances along i , j and k . from Vallis, Atmospheric and Oceanic Fluid Dynamics Radius: R = 6 . 37122 × 10 6 m , Rotation rate: Ω = 7 . 292 × 10 − 5 s − 1 Acc. due to gravity: g = 9 . 80616 m · s − 2 3 / 54

  4. Rotating shallow water model v = velocity , H = height of atm. rel. to mean surface H s = height of ground rel to mean surface , D = H − H s = depth Vector invariant form ∂ v ∂t + ∇ Φ + ( ω + f ) v ⊥ = 0 ∂D ∂t + ∇ · ( v D ) = 0 where K = 1 2 | v | 2 , Φ = gH + K, ω = k · ∇ × v v ⊥ = k × v , f = 2Ω sin θ 4 / 54

  5. Energy is conserved Conservation law � 1 � �� � � ∂ 2 D | v | 2 + 1 gH + 1 2 gH 2 2 | v | 2 + ∇ · v D = 0 ∂t Total energy is conserved � 1 2 D | v | 2 + 1 � � 2 gH 2 d s = const. S 5 / 54

  6. Vorticity dynamics Absolute vorticity η := ω + f Vorticity equation ∂η ∂t + ∇ · ( v η ) = 0 Potential vorticity q := η D PV is advected by the flow ∂q ∂t + v · ∇ q = 0 q is constant along streamlines 6 / 54

  7. Potential enstrophy is conserved Another conservation law � η 2 � η 2 ∂ � � + ∇ · = 0 D v ∂t D Potential enstrophy is conserved η 2 � � Dq 2 d s = const. D d s = S S Infinite number of conserved quantities (Casimirs) � DF ( q )d s S for any function F , e.g., � Dq i d s = const. , i = 0 , 1 , 2 , . . . , S 7 / 54

  8. Conservation form Momentum and mass conservation ∂ � D v ⊗ v + 1 � 2 gD 2 I ∂t ( D v ) + ∇ · = − f ( k × D v ) − gD ∇ H s ∂D ∂t + ∇ · ( D v ) = 0 Finite volume, SEM, DG 8 / 54

  9. Vorticity-divergence form (Z grid) Tangential divergence: δ = ∇ · v ∂D ∂t + ∇ · ( v D ) = 0 ∂η ∂t + ∇ · ( v η ) = 0 ∂δ ∂t − ∇ × ( v η ) + ∇ 2 ( gH + | v | 2 / 2) = 0 −∇ 2 ψ = − ( η − f ) −∇ 2 χ = − δ ∇ χ + ∇ ⊥ ψ = v Usually solved with global pseudo-spectral methods 3 or finite volume method 3 Hack & Jakob (1992) 9 / 54

  10. Hyperbolic property In Cartesian coordinates, with the z -axis along the axis of rotation ∂ U ∂ U ∂ U ∂y + ˜ ∂t + A 1 ∂x + A 2 S = 0 (1) where       v 1 v 1 0 g v 2 0 0  ,  , U = v 2 A 1 = 0 v 1 0 A 2 = 0 v 2 g     D D 0 v 1 0 D v 2 For any unit vector n = ( n 1 , n 2 ) −√ gn 1 √ gn 1    − n 2  v n 0 gn 1 −√ gn 2 √ gn 2  , A 1 n 2 + A 2 n 2 = 0 v n gn 2 R = n 1 √ √    Dn 1 Dn 2 v n 0 D D � � Eigenvalues: v n , v n − gD, v n + gD 10 / 54

  11. Riemann solver based numerical flux ∂ U ∂t + ∂ F ∂x = 0 with initial condition � U l x < 0 U ( x, 0) = x > 0 U r Linearized problem (Roe, 1981) ∂ U ∂t + A ( U l , U r ) ∂ U A = R Λ R − 1 ∂x = 0 , Solve Riemann problem exactly and compute flux at x = 0 F lr = 1 2[ F ( U l ) + F ( U r )] − 1 2 R | Λ | R − 1 ( U r − U l ) 11 / 54

  12. Previous works 4 • Finite volume Arakawa & Lamb (1981), Salmon (2007), Eldred & Randall (2016) • DG, conservation form Giraldo et al. (2002) • DG, vector invariant form Nair et al. (2004) • SEM Taylor et al. (1997), Giraldo (2001), Taylor & Fournier (2010) • Compatible finite elements Natale et al. (2016) 4 See review article by Marras et al., Arch Comp Meth Eng, 2015 12 / 54

  13. Cubed-sphere grid 5 ( X 1 , X 2 ) ∈ [ − a, + a ] 2 ( x 1 , x 2 , x 3 ) ∈ S 5 Sadourny (1972), Ronchi et al. (1996) 13 / 54

  14. Cubed-sphere grid ( X 1 , X 2 ) ∈ [ − a, + a ] 2 ( x 1 , x 2 , x 3 ) ∈ S 14 / 54

  15. Cubed-sphere grid ( χ 1 , χ 2 ) ( X 1 , X 2 ) ( x 1 , x 2 , x 3 ) χ i = arctan( X i /a ) ∈ [ − π/ 4 , π/ 4] , i = 1 , 2 15 / 54

  16. Cubed-sphere map From Nair et al., MWR, 133, 2005 Cube: [ − a, + a ] 3 √ a = R/ 3 � � On P 1 : ( x 1 , x 2 , x 3 ) = R x 2 x 1 , x 3 r ( a, X 1 , X 2 ) , ( X 1 , X 2 ) = a x 1 16 / 54

  17. Finite element space • T h = cubed sphere grid • ˆ T = [0 , 1] × [0 , 1] is the reference cell • Each cell T ∈ T h obtained by mapping reference cell ˆ T F T : ˆ T → T, ( ξ 1 , ξ 2 ) → ( χ 1 , χ 2 ) → ( x 1 , x 2 , x 3 ) • Q N = 2-d tensor product polynomials of degree at most N • Space of broken polynomials for scalar and vector functions V N h = { ψ ∈ L 2 ( S ) : ψ | T ◦ F − 1 W N h = V N h × V N h × V N ∈ Q N } , T h • Lagrange polynomials using Gauss-Legendre nodes • Same nodes used for quadrature 17 / 54

  18. Tangential gradient 6 Coordinates ξ = ( ξ 1 , ξ 2 ) ∈ ˆ T, x = ( x 1 , x 2 , x 3 ) ∈ S First fundamental form g ij = ∂ x · ∂ x , G = [ g ij ] ∂ξ i ∂ξ j and its inverse g ij = [ G − 1 ] ij Tangential gradient 2 2 ∂φ g ij ∂x d ∂φ � � = , d = 1 , 2 , 3 ∂x d ∂ξ i ∂ξ j i =1 j =1 6 Dziuk & Elliott, Acta Numerica, 2013 18 / 54

  19. DG for v − D model For each cell T ∈ T h d � � v h · ϕ h d s − Φ( v h , D h , H s ) ∇ · ϕ h d s d t T T � � ˆ F v · ϕ − ( ω h + f ) v ⊥ ∀ ϕ h ∈ W N + h d σ + h · ϕ h d s = 0 , h ∂T T d � � � ˆ F D ψ − ∀ ψ h ∈ V N D h ψ h d s − v h D h · ∇ ψ h d s + h d σ = 0 , h d t T T ∂T F v , ˆ ˆ F D are numerical fluxes obtained from Rusanov scheme 1 2(Φ − + Φ + ) n − − 1 2 λ ( v + − v − ) ˆ F v = 1 2( D − v − + D + v + ) n − − 1 2 λ ( D + − D − ) ˆ F D = where λ = max {| v − · n − | + gD − , | v + · n + | + � � gD + } 19 / 54

  20. DG for v − D model Vorticity computed locally on each cell � � � h n − · ˆ ∇ ψ h · v ⊥ ψ − v ⊥ ∀ ψ h ∈ V N ω h ψ h d s = h d s − h d σ, h T T ∂T where v = 1 2( v − + v + ) ˆ 20 / 54

  21. DG for v − D − η model For each cell T ∈ T h d � � v h · ϕ h d s − Φ( v h , D h , H s ) ∇ · ϕ h d s d t T T � � ˆ F v · ϕ − η h v ⊥ ∀ ϕ h ∈ W N + h d σ + h · ϕ h d s = 0 , h ∂T T d � � � ˆ F D ψ − ∀ ψ h ∈ V N D h ψ h d s − v h D h · ∇ ψ h d s + h d σ = 0 , h d t T T ∂T d � � � F η ψ − ˆ ∀ ψ h ∈ V N η h ψ h d s − v h η h · ∇ ψ h d s + h d σ = 0 , h d t T T ∂T F v , ˆ ˆ F D , ˆ F η are numerical fluxes obtained from a Riemann solver. 21 / 54

  22. Numerical flux for v − D − η model In Cartesian coordinates, with the z -axis along the axis of rotation ∂ U ∂ U ∂ U ∂y + ˜ ∂t + A 1 ∂x + A 2 S = 0 (2) where  v 1   v 1 0 g 0   v 2 0 0 0  v 2 0 v 1 0 0 0 v 2 g 0       U =  , A 1 =  , A 2 =       D D 0 v 1 0 0 D v 2 0     η η 0 0 v 1 0 η 0 v 2 For any unit vector n = ( n 1 , n 2 )  v n 0 gn 1 0  0 v n gn 2 0   A 1 n 2 + A 2 n 2 =   Dn 1 Dn 2 v n 0   ηn 1 ηn 2 0 v n 22 / 54

  23. Numerical flux for v − D − η model � � Eigenvalues: v n , v n , v n − gD, v n + gD Corresponding linearly independent eigenvectors −√ gDn 1 √ gDn 1   0 − n 2 −√ gDn 2 √ gDn 2 0 n 1   R =   0 0 D D   1 0 η η Numerical flux (Φ − + Φ + ) n − v + 1 − v −     1 1 (Φ − + Φ + ) n − v + 2 − v − F = 1  − 1 ˆ 2 R | Λ | R − 1  2   2  ( D − v − + D + v + ) · n − D + − D −     2    ( η − v − + η + v + ) · n − η + − η − Rotate velocity flux to global ( x 1 , x 2 , x 3 ) coordinates. 23 / 54

  24. Time integration: ˙ U = R ( U ) 3-stage strong stability preserving Runge-Kutta scheme U n − ∆ t · R ( U n ) U (1) = 3 4 U n + 1 4[ U n + ∆ t · R ( U (1) )] U (2) = 1 3 U n + 2 3[ U n + ∆ t · R ( U (2) )] U n +1 = After each stage, project the velocity to tangent plane at all GL points. CFL condition CFL h T ∆ t = 2 N 2 + 1 min �| v | + √ gD � L ∞ ( T ) T ∈T h 24 / 54

  25. Numerical implementation • Written in C++ and deal.II 7 • Cube sphere mapping with MappingManifold • Enough to provide these functions 8 ◮ pull back : ( x 1 , x 2 , x 3 ) → ( χ 1 , χ 2 ) ◮ push forward : ( χ 1 , χ 2 ) → ( x 1 , x 2 , x 3 ) ∂x i ◮ ∂χ j • Parallelized using MPI, p4est 9 7 http://www.dealii.org 8 http://bitbucket.org/cpraveen/deal_ii/src/master/cubed_sphere 9 http://www.p4est.org 25 / 54

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend