divergence free discontinuous galerkin method for ideal
play

Divergence-free discontinuous Galerkin method for ideal compressible - PowerPoint PPT Presentation

Divergence-free discontinuous Galerkin method for ideal compressible MHD equations Praveen Chandrashekar praveen@math.tifrbng.res.in http://cpraveen.github.io Center for Applicable Mathematics Tata Institute of Fundamental Research


  1. Divergence-free discontinuous Galerkin method for ideal compressible MHD equations Praveen Chandrashekar praveen@math.tifrbng.res.in http://cpraveen.github.io Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065, India http://math.tifrbng.res.in Oberseminar, Dept. of Mathematics, University of W¨ urzburg 4 June 2019 1 / 35

  2. Maxwell Equations Linear hyperbolic system ∂ B ∂ D ∂t + ∇ × E = 0 , ∂t − ∇ × H = − J B = magnetic flux density D = electric flux density E = electric field H = magnetic field J = electric current density µ, ε ∈ R 3 × 3 symmetric B = µ H , D = ε E , J = σ E ε = permittivity tensor µ = magnetic permeability tensor σ = conductivity ∂ρ ∇ · B = 0 , ∇ · D = ρ (electric charge density) , ∂t + ∇ · J = 0 2 / 35

  3. Ideal compressible MHD equations Nonlinear hyperbolic system Compressible Euler equations with Lorentz force ∂ρ ∂t + ∇ · ( ρ v ) = 0 ∂ ( ρ v ) + ∇ · ( P I + ρ v ⊗ v − B ⊗ B ) = 0 ∂t ∂E ∂t + ∇ · (( E + P ) v + ( v · B ) B ) = 0 ∂ B ∂t − ∇ × ( v × B ) = 0 Magnetic monopoles do not exist: = ⇒ ∇ · B = 0 3 / 35

  4. Divergence constraint Rotated shock tube Powell 0 . 1 ∂ B ∂t + ∇ × E = 0 0 . 0 − 0 . 1 Relative error on B � ∇ · ∂ B cleaning 0 . 1 ∂t + ∇ · ∇× E = 0 � �� � 0 . 0 =0 − 0 . 1 ∂ ∂t ∇ · B = 0 Athena 0 . 1 0 . 0 If − 0 . 1 ∇ · B = 0 at t = 0 − 0 . 4 − 0 . 2 0 . 0 0 . 2 0 . 4 x then Guillet et al., MNRAS 2019 ∇ · B = 0 for t > 0 Discrete div-free = ⇒ positivity (Kailiang Wu) 4 / 35

  5. Objectives • Based on conservation form of the equations • Upwind-type schemes using Riemann solvers • Divergence-free schemes for Maxwell’s and compressible MHD ◮ Cartesian grids at present ◮ Divergence preserving schemes (RT) ◮ Divergence-free reconstruction (BDM) • High order accurate ◮ discontinuous-Galerkin • Non-oscillatory schemes for MHD ◮ using limiters • Explicit time stepping • Based on previous work for induction equation ◮ J. Sci. Comp., Vol. 79, pp, 79-102, 2019 5 / 35

  6. Some existing methods Exactly divergence-free methods • Yee scheme (Yee (1966)) • Projection methods (Brackbill & Barnes (1980)) • Constrained transport (Evans & Hawley (1989)) • Divergence-free reconstruction (Balsara (2001)) • Globally divergence-free scheme (Li et al. (2011), Fu et al, (2018)) Approximate methods • Locally divergence-free schemes (Cockburn, Li & Shu (2005)) • Godunov’s symmetrized version of MHD (Powell, Gassner et al., C/K) • Divergence cleaning methods (Dedner et al.) 6 / 35

  7. MHD equations in 2-D ∂ U ∂t + ∂ F x ∂x + ∂ F y ∂y = 0       ρ ρv x ρv y P + ρv 2 x − B 2 ρv x v y − B x B y ρv x x            P + ρv 2 y − B 2  ρv x v y − B x B y ρv y y             ρv x v z − B x B z ρv y v z − B y B z ρv z       U = , F x = , F y =       E ( E + P ) v x − B x ( v · B ) ( E + P ) v y − B y ( v · B )             B x 0 E z             B y − E z 0       B z v x B z − v z B x v y B z − v z B y where P = p + 1 γ − 1 + 1 p 2 ρ | v | 2 + 1 2 | B | 2 , 2 | B | 2 B = ( B x , B y , B z ) , E = E z is the electric field in the z direction E z = − ( v × B ) z = v y B x − v x B y 7 / 35

  8. MHD equations in 2-D Split into two parts U = [ ρ, ρ v , E , B z ] ⊤ , B = ( B x , B y ) ∂ U ∂B x ∂t + ∂E z ∂B y ∂t − ∂E z ∂t + ∇ · F ( U , B ) = 0 , ∂y = 0 , ∂x = 0 The fluxes F = ( F x , F y ) are of the form     ρv x ρv y P + ρv 2 x − B 2 ρv x v y − B x B y     x     P + ρv 2 y − B 2 ρv x v y − B x B y     y F x = , F y =     ρv x v z − B x B z ρv y v z − B y B z         ( E + P ) v x − B x ( v · B ) ( E + P ) v y − B y ( v · B )     v x B z − v z B x v y B z − v z B y 8 / 35

  9. Approximation of magnetic field If we want ∇ · B = 0 , it is natural to look for approximations in H ( div, Ω) = { B ∈ L 2 (Ω) : div( B ) ∈ L 2 (Ω) } To approximate functions in H ( div, Ω) on a mesh T h with piecewise polynomials, we need B · n continuous across element faces 9 / 35

  10. Approximation spaces: Degree k ≥ 0 Map cell K to reference cell ˆ K = [ − 1 2 , + 1 2 ] × [ − 1 2 , + 1 2 ] P r ( ξ ) = span { 1 , ξ, ξ 2 , . . . , ξ r } , Q r,s ( ξ, η ) = P r ( ξ ) ⊗ P s ( η ) Hydrodynamic variables in each cell k k � � U ( ξ, η ) = U ij φ i ( ξ ) φ j ( η ) ∈ Q k,k i =0 j =0 Normal component of B on faces k � on vertical faces : b x ( η ) = a j φ j ( η ) ∈ P k ( η ) j =0 k � on horizontal faces : b y ( ξ ) = b j φ j ( ξ ) ∈ P k ( ξ ) j =0 { φ i ( ξ ) } are orthogonal polynomials on [ − 1 2 , + 1 2 ] , with degree φ i = i . 10 / 35

  11. Approximation spaces: Degree k ≥ 0 For k ≥ 1 ,define certain cell moments � + 1 � + 1 1 2 2 α ij = α ij ( B x ) := B x ( ξ, η ) φ i ( ξ ) φ j ( η ) d ξ d η, 0 ≤ i ≤ k − 1 , 0 ≤ j ≤ k m ij − 1 − 1 2 2 � + 1 � + 1 1 2 2 β ij = β ij ( B y ) := B y ( ξ, η ) φ i ( ξ ) φ j ( η ) d ξ d η, 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1 m ij − 1 − 1 2 2 � + 1 � + 1 � + 1 2 2 2 [ φ i ( ξ ) φ j ( η )] 2 d ξ d η = m i m j , [ φ i ( ξ )] 2 d ξ m ij = m i = − 1 − 1 − 1 2 2 2 α 00 , β 00 are cell averages of B x , B y Solution variables { U ( ξ, η ) } , { b x ( η ) } , { b y ( ξ ) } , { α, β } The set b x , b y , α, β are the dofs for the Raviart-Thomas space. 11 / 35

  12. RT reconstruction: b ± x ( η ) , b ± y ( ξ ) , α, β → B ( ξ, η ) Given b ± x ( η ) ∈ P k and b ± 2 3 y ( ξ ) ∈ P k , b + y ( ξ ) and set of cell moments x ( η ) α x ( η ) { α ij , 0 ≤ i ≤ k − 1 , 0 ≤ j ≤ k } b − b + β { β ij , 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1 } b − y ( ξ ) 0 1 Find B x ∈ Q k +1 ,k and B y ∈ Q k,k +1 such that 2 , η ) = b ± 2 ) = b ± B x ( ± 1 η ∈ [ − 1 2 , 1 B y ( ξ, ± 1 ξ ∈ [ − 1 2 , 1 x ( η ) , 2 ] , y ( ξ ) , 2 ] � + 1 � + 1 1 2 2 B x ( ξ, η ) φ i ( ξ ) φ j ( η ) d ξ d η = α ij , 0 ≤ i ≤ k − 1 , 0 ≤ j ≤ k m ij − 1 − 1 2 2 � + 1 � + 1 1 2 2 B y ( ξ, η ) φ i ( ξ ) φ j ( η ) d ξ d η = β ij , 0 ≤ i ≤ k, 0 ≤ j ≤ k − 1 m ij − 1 − 1 2 2 (1) ∃ unique solution. (2) Data div-free = ⇒ reconstructed B is div-free. 12 / 35

  13. DG scheme for B on faces On every vertical face of the mesh � + 1 � + 1 ∂t φ i d η − 1 d φ i d η d η + 1 ∂b x 2 2 ˆ ∆ y [ ˜ E z E z φ i ] = 0 , 0 ≤ i ≤ k ∆ y − 1 − 1 2 2 On every horizontal face of the mesh � + 1 � + 1 ∂b y ∂t φ i d ξ + 1 d φ i d ξ d ξ − 1 2 2 ˆ ∆ x [ ˜ E z E z φ i ] = 0 , 0 ≤ i ≤ k ∆ x − 1 − 1 2 2 ˆ E z : on face, 1-D Riemann solver ˜ E z : at vertex, 2-D Riemann solver 13 / 35

  14. DG scheme for B on cells � + 1 � + 1 m ij d α ij ∂B x 2 2 = ∂t φ i ( ξ ) φ j ( η ) d ξ d η d t − 1 − 1 2 2 � + 1 � + 1 − 1 ∂E z 2 2 = ∂η φ i ( ξ ) φ j ( η ) d ξ d η ∆ y − 1 − 1 2 2 � + 1 − 1 2 [ ˆ 2 ) − ˆ E z ( ξ, 1 2 ) φ i ( ξ ) φ j ( 1 E z ( ξ, − 1 2 ) φ i ( ξ ) φ j ( − 1 = 2 )] d ξ ∆ y − 1 2 � + 1 � + 1 + 1 2 2 E z ( ξ, η ) φ i ( ξ ) φ ′ j ( η ) d ξ d η, 0 ≤ i ≤ k − 1 , 0 ≤ j ≤ k ∆ y − 1 − 1 2 2 Not a Galerkin method, test functions ( Q k − 1 ,k ) different from trial functions ( Q k +1 ,k ) 14 / 35

  15. DG scheme for U on cells For each test function Φ( ξ, η ) = φ i ( ξ ) φ j ( η ) ∈ Q k,k � 1 � + 1 � + 1 � + 1 � + 1 ∂ U c � ∆ x F x ∂ Φ ∆ y F y ∂ Φ 1 2 2 2 2 ∂t Φ( ξ, η ) d ξ d η − ∂ξ + d ξ d η ∂η − 1 − 1 − 1 − 1 2 2 2 2 � + 1 � + 1 + 1 1 2 2 F + ˆ F − ˆ x Φ( 1 x Φ( − 1 2 , η ) d η − 2 , η ) d η ∆ x ∆ x − 1 − 1 2 2 � + 1 � + 1 + 1 1 2 2 F + ˆ ˆ y Φ( ξ, 1 F − y Φ( ξ, − 1 2 ) d ξ − 2 ) d ξ = 0 ∆ y ∆ y − 1 − 1 2 2 15 / 35

  16. DG scheme for U on cells U n B n x B n y b + y U w U c U e B w B c B e b − b + x x x x x B w B c B e y y y b − y U s B s x B s y F x = F x ( U c , B c x , B c F y = F y ( U c , B c x , B c y ) , y ) F + ˆ x = ˆ F x (( U c , b + y ) , ( U e , b + ˆ x = ˆ x , B c x , B e F − F x (( U w , b − x , B w y ) , ( U c , b − x , B c y )) , y )) F + ˆ y = ˆ F y (( U c , B c x , b + y ) , ( U n , B n x , b + F − ˆ y = ˆ F y (( U s , B s x , b − y ) , ( U c , B c x , b − y )) , y )) 16 / 35

  17. Constraints on B Definition (Strongly divergence-free) We will say that a vector field B defined on a mesh is strongly divergence-free if 1 ∇ · B = 0 in each cell K ∈ T h 2 B · n is continuous at each face F ∈ T h Theorem (1) The DG scheme satisfies � d ( ∇ · B ) φ d x d y = 0 , ∀ φ ∈ Q k,k d t K and since ∇ · B ∈ Q k,k = ⇒ ∇ · B = constant wrt time. (2) If ∇ · B ≡ 0 at t = 0 = ⇒ ∇ · B ≡ 0 for t > 0 17 / 35

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend