disconnected beyond 2 2
play

Disconnected beyond 2+2 Thomas Blum Norman Christ Ma sashi Hayakawa - PowerPoint PPT Presentation

1/29 Disconnected beyond 2+2 Thomas Blum Norman Christ Ma sashi Hayakawa Taku Izubuchi UConn/RBRC Columbia Nagoya BNL/RBRC Luchang Jin Chulwoo Jung Christoph Lehner Cheng Tu UConn/RBRC BNL BNL UConn and the RBC/UKQCD collaborations


  1. 1/29 Disconnected beyond 2+2 Thomas Blum Norman Christ Ma sashi Hayakawa Taku Izubuchi UConn/RBRC Columbia Nagoya BNL/RBRC Luchang Jin Chulwoo Jung Christoph Lehner Cheng Tu UConn/RBRC BNL BNL UConn and the RBC/UKQCD collaborations Jun 18, 2018 Helmholtz-Institut Mainz Second Plenary Workshop of the Muon g-2 Theory Initiative

  2. HLbL Connected di agrams 2/29 x op , ν y, σ x, ρ y, σ x, ρ y, σ x, ρ z, κ z, κ z, κ x op , ν x op , ν x src x snk x src x snk x src x snk y ′ , σ ′ x ′ , ρ ′ y ′ , σ ′ x ′ , ρ ′ y ′ , σ ′ x ′ , ρ ′ z ′ , κ ′ z ′ , κ ′ z ′ , κ ′ • Permutations of the three internal photons are not shown. • There should be gluons exchange between and within the quark loops, but are not drawn.

  3. Disconnected diagrams 3/29 • One diagram (the biggest diagram below, referred to as 2 + 2 ) do not vanish even in the SU (3) limit. • We extend the method and computed this leading disconnected diagram as well. x op , ν x op , ν x op , ν z, κ y, σ x, ρ z, κ z, κ y, σ x, ρ y, σ x, ρ x src x snk z ′ , κ ′ x ′ , ρ ′ y ′ , σ ′ x src x snk x src x snk y ′ , σ ′ z ′ , κ ′ y ′ , σ ′ x ′ , ρ ′ x ′ , ρ ′ z ′ , κ ′ x op , ν x op , ν x op , ν z, κ y, σ x, ρ z, κ z, κ y, σ x, ρ y, σ x, ρ x src x snk x src x snk x src x snk z ′ , κ ′ x ′ , ρ ′ y ′ , σ ′ z ′ , κ ′ z ′ , κ ′ x ′ , ρ ′ y ′ , σ ′ x ′ , ρ ′ y ′ , σ ′ • Permutations of the three internal photons are not shown. • There should be gluons exchange between and within the quark loops, but are not drawn. • We need to make sure that the loops are connected by gluons by “vacuum” subtraction. So the diagrams are 1-particle irreducible.

  4. Disconnected diagram beyond 2+2 4/29 x op , ν z, κ x op , ν y, σ x, ρ z, κ y, σ x, ρ x src x snk y ′ , σ ′ z ′ , κ ′ x ′ , ρ ′ x src x snk y ′ , σ ′ x ′ , ρ ′ z ′ , κ ′ • St il lw o r k in g in pr og r ess. • The right loop has been calculated by Christoph Lehner (can also be used to calculated disconnected HVP) and saved to disk. • The left loop can be evaluated by two point source propagators at x and y . We can then randomly sample x and y , similar to the way we evaluted the connected diagrams.

  5. 5/29 Pion Tr ansition Form Factor (TFF) on Lattice: RBC results Thomas Blum Norman Christ Masashi Hayakawa Taku Izubuchi UConn/RBRC Columbia Nagoya BNL/RBRC Luchang Jin Chulwoo Jung Christoph Lehner Cheng Tu UConn/RBRC BNL BNL UConn and the RBC/UKQCD collaborations Jun 18, 2018 Helmholtz-Institut Mainz Second Plenary Workshop of the Muon g-2 Theory Initiative

  6. Outline 6/29 We will be working in Euclidean space by default. • Pion TF F f o r mu l a t ion • Model and Lattice results • Contribution to HLbL with pion TFF

  7. Pion TFF formulation 7/29 � 0 | T i J µ ( u ) i J ν ( v ) | π 0 ( p � ) � (1) 2 , q 2 2 ) (X.D. Ji, C. Jung, [hep-lat/0101014]): Momentum space TFF F ( q 1 � i d 4 u e − iq 1 · u − iq 2 · v � 0 | T i J µ ( u ) i J ν ( v ) | π 0 ( p 2 , q 2 2 ) . � ) � = 4 π 2 F π ǫ µ,ν,ρ,σ q 1 ,ρ q 2 ,σ F ( q 1 (2) Coordinate space TFF F c ( x, z 2 ) (previously presented at UConn by Cheng Tu): � 0 | T i J µ ( u ) i J ν ( v ) | π 0 ( p � ) � i u ) ( − i ∂ σ v ) F ′ ( p · ( u − v ) , ( u − v ) 2 ) e ip · v , = ǫ µ,ν,ρ,σ ( − i ∂ ρ (3) 4 π 2 F π Let r = u − v , F c ( x, r 2 ) is the Fourier transformation of F ′ ( p · r, r 2 ) : � ∞ F ′ ( p · r, r 2 ) = dx F c ( x, r 2 ) e ixp · r . (4) −∞ Interestingly, we can prove that: F c ( x, r 2 ) = 0 if x < 0 or x > 1 . (5)

  8. Pion TFF formulation 8/29 � 0 | T i J µ ( u ) i J ν ( v ) | π 0 ( p � ) � i u ) ( − i ∂ σ v ) = 4 π 2 F π ǫ µ,ν,ρ,σ ( − i ∂ ρ 1 � � � � � � dx F c ( x, ( u − v ) 2 ) π 0 ( xu + (1 − x ) v ) � � π 0 ( p × 0 � ) (6) � � � 0 i = 4 π 2 F π ǫ µ,ν,ρ,σ 1 � � � � � u F c ( x, ( u − v ) 2 )] ∂ σ π 0 ( xu + (1 − x ) v ) � � � π 0 ( p × 0 dx [ − ∂ ρ � ) (7) � � � 0 The coordinate space form factor F c ( x, r 2 ) can be interpreted this way: • The dependence on x describe the distribution of the pion source along the segment between the two EM currents. In the r 2 → 0 limit, the function can be factorized into pion d • ist r ibut ion a mpl it u des ) . At tree level, F c ( x, r 2 ) is the same as PDA after normalization. (PD A F c ( x, r 2 ) ∼ x (1 − x ) . • The parameter r = ( u − v ) is the separation between the two EM currents.

  9. Pion TFF formulation: proof for 0 � x � 1 9/29 Define d 3 p � 1 ˆ (2 π ) 3 | π 0 ( p � π 0 ( p π 0 = P � ) � � ) | . (8) 2 E π 0 ,p � d 4 p e ip · ( x − y ) � ˆ � � � � π 0 ( x ) P π 0 π 0 ( y ) � 0 � 0 = G ( x − y ) = (9) p 2 + m π (2 π ) 4 2 ˆ � � π 0 π 0 ( w ) � � 0 � T [ i J µ ( u ) i J ν ( v )] P � 0 � � � ∞ � � i u F c ( x, ( u − v ) 2 )] ∂ σ π 0 ( xu + (1 − x ) v ) P ˆ � � π 0 π 0 ( w ) = 0 ǫ µ,ν,ρ,σ dx [ − ∂ ρ � 0 4 π 2 F π � � � −∞ ∞ � i u F c ( x, ( u − v ) 2 )] ∂ σ G ( x u + (1 − x ) v − w ) . = dx [ − ∂ ρ 4 π 2 F π ǫ µ,ν,ρ,σ (10) −∞ Let w = xu + (1 − x ) v , the above expression should not be singular when x > 1 or x < 0 . Therefore F c ( x, ( u − v ) 2 ) should be zero for x outside of [0 , 1] .

  10. Pion TFF formulation 10/29 Let f ( | r | ) be the function which describes the strength of the π 0 γ γ coupling: 1 2 � � � 2 F π 1 r F c ( x, r 2 )] = 2 z ρ d x [ − ∂ ρ f ( | r | ) . (11) ( r 2 ) 2 3 0 ∞ (2 F π 2 /3) f ( r ) 2 r d r = 1 , ( F (0 , 0) = 1 ). Based on Chiral anomaly, ( π 2 /2) � • 0 Based on OPE, in the r → 0 limit, f ( | r | ) → 1 , ( F ( Q 2 , Q 2 ) → 8 π 2 F π 2 /(3 Q 2 ) ). • For HLbL, the long distance contribution should be dominated by the π 0 exchange process, where the π 0 propagator for a relatively long distance, while the two photons created/anni- hilated the pion are fairly close. Therefore, the x dependence of F c ( x, r 2 ) is less important. Instead, we should focus on the total strength f ( | r | ) .

  11. Outline 11/29 We will be working in Euclidean space by default. • Pion TFF formulation • M od ela n d L a t t ic e r esul t s • Contribution to HLbL with pion TFF

  12. Pion TFF formulation 12/29 Vector Meson Dominance model 2 2 m V m V 2 , q 2 2 ) = F VMD ( q 1 (12) 2 + m V 2 + m V 2 2 q 1 q 2 Two Ends model 2 /2 2 /2 m V 2 + m V 2 , q 2 2 ) = F TE ( q 1 (13) 2 + m V 2 + m V 2 q 1 q 2 Lowest Meson Dominance model 2 2 2 ) = 8 π 2 F π � 1 − 8 π 2 F π � 2 , q 2 2 , q 2 2 ) + 2 , q 2 2 ) F LMD ( q 1 2 F TE ( q 1 F VMD ( q 1 (14) 2 3 m V 3 m V Relation between Momentum space form and Coordinate space form: 1 � � 2 , q 2 2 ) = d 4 z e − iq 1 · r dx F c ( x, r 2 ) e ixp · r F ( q 1 0 1 � � d 4 r e − i ((1 − x ) q 1 − xq 2 ) · r F c ( x, r 2 ) = (15) dx 0

  13. Pion TFF formulation: VMD model 13/29 2 2 m V m V 2 , q 2 2 ) = F VMD ( q 1 2 + m V 2 + m V 2 2 q 1 q 2 1 4 � m V = d x 2 + m V 2 ) + x ( q 2 2 + m V 2 )] 2 [(1 − x )( q 1 0 1 4 � m V = d x (16) 2 − x (1 − x ) m π [[(1 − x ) q 1 − x q 2 ] 2 + m V 2 ] 2 0 Recall 1 � � d 4 r e − i ((1 − x ) q 1 − xq 2 ) · r F c ( x, r 2 ) 2 , q 2 2 ) = F ( q 1 (17) dx 0 4 e ip · r d 4 p � m V VMD ( x, r 2 ) = (18) F c 2 − x (1 − x ) m π [ p 2 + m V (2 π ) 4 2 ] 2 The dependence on x is very weak. Pion is uniformly created/annihilated between the two EM currents.

  14. Pion TFF formulation: TE model 14/29 2 /2 2 /2 m V 2 + m V 2 , q 2 2 ) = F TE ( q 1 2 + m V 2 + m V 2 q 1 q 2 1 2 � d x δ ( x ) + δ ( x − 1) m V = (19) ((1 − x ) q 1 − x q 2 ) 2 + m V 2 2 0 Recall 1 � � d 4 r e − i ((1 − x ) q 1 − xq 2 ) · r F c ( x, r 2 ) 2 , q 2 2 ) = F ( q 1 (20) dx 0 2 e ip · r d 4 p � TE ( x, r 2 ) = δ ( x ) + δ ( x − 1) m V (21) F c p 2 + m V (2 π ) 4 2 2 The value for x is either 0 or 1 . Pion is created/annihilated at the two ends of the segment between the two EM currents location.

  15. Pion TFF formulation: LMD model 15/29 2 2 2 ) = 8 π 2 F π � 1 − 8 π 2 F π � 2 , q 2 2 , q 2 2 ) + 2 , q 2 2 ) F LMD ( q 1 2 F TE ( q 1 F VMD ( q 1 (22) 2 3 m V 3 m V 3 VMD model TE model 2 . 5 LMD model 2 f ( r ) 1 . 5 1 0 . 5 0 0 0 . 5 1 1 . 5 2 2 . 5 3 r (fm)

  16. Lattice results 16/29 RBC/UKQCD 24 3 × 64 Iwasaki+DSDR ensemble: m π = 139 MeV , a − 1 = 1.015 GeV . With z t = 0 , f ( | z | ) can be evaluated with ( t sep = 10 a ) � 0 | T i J µ ( z ) i J ν (0) | π 0 ( p � = 0) � 2 � � 2 F π 1 i = ǫ µ,ν,ρ,σ 2 z ρ i p σ f ( | z | ) , (23) 4 π 2 F π ( z 2 ) 2 3 Using 16 configurations and the point source propagators generated by computing the leading disconnected contribution to HLbL, we obtained:

  17. 3 VMD model TE model 2 . 5 LMD model 24D lattice 2 f ( r ) 1 . 5 1 0 . 5 0 0 0 . 5 1 1 . 5 2 2 . 5 3 r (fm)

  18. Outline 17/29 We will be working in Euclidean space by default. • Pion TFF formulation • Model and Lattice results • C on t r ibut ion t o H L bL w it h pion TF F

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend