entanglement entropy of disconnected regions in conformal
play

Entanglement entropy of disconnected regions in Conformal Field - PowerPoint PPT Presentation

Entanglement entropy of disconnected regions in Conformal Field Theories Pasquale Calabrese Dipartimento di Fisica Universit` a di Pisa GGI workshop on AdS/CFT, Florence, November 2010 Mainly joint work with John Cardy also V Alba, M


  1. Entanglement entropy of disconnected regions in Conformal Field Theories Pasquale Calabrese Dipartimento di Fisica Universit` a di Pisa GGI workshop on AdS/CFT, Florence, November 2010 Mainly joint work with John Cardy also V Alba, M Campostrini, F Essler, M. Fagotti, A Lefevre, J Moore, B Nienhuis, I Peschel, L Tagliacozzo, E Tonni Review: PC & JC JPA 42, 504005 (2009) Pasquale Calabrese Entanglement and CFT

  2. Entanglement: what is it? Quantum system in a pure state | Ψ � The density matrix is ρ = | Ψ �� Ψ | ( Tr ρ n = 1) H = H A ⊗ H B Alice can measure only in A, while Bob in the remainder B Pasquale Calabrese Entanglement and CFT

  3. Entanglement: what is it? Quantum system in a pure state | Ψ � The density matrix is ρ = | Ψ �� Ψ | ( Tr ρ n = 1) H = H A ⊗ H B Alice can measure only in A, while Bob in the remainder B Alice measures are entangled with Bob’s ones: Schmidt deco � � c 2 | Ψ � = c n | Ψ n � A | Ψ n � B c n ≥ 0 , n = 1 n n Pasquale Calabrese Entanglement and CFT

  4. Entanglement: what is it? Quantum system in a pure state | Ψ � The density matrix is ρ = | Ψ �� Ψ | ( Tr ρ n = 1) H = H A ⊗ H B Alice can measure only in A, while Bob in the remainder B Alice measures are entangled with Bob’s ones: Schmidt deco � � c 2 | Ψ � = c n | Ψ n � A | Ψ n � B c n ≥ 0 , n = 1 n n If c 1 = 1 ⇒ | Ψ � unentangled If c i all equal ⇒ | Ψ � maximally entangled Pasquale Calabrese Entanglement and CFT

  5. Entanglement: what is it? Quantum system in a pure state | Ψ � The density matrix is ρ = | Ψ �� Ψ | ( Tr ρ n = 1) H = H A ⊗ H B Alice can measure only in A, while Bob in the remainder B Alice measures are entangled with Bob’s ones: Schmidt deco � � c 2 | Ψ � = c n | Ψ n � A | Ψ n � B c n ≥ 0 , n = 1 n n If c 1 = 1 ⇒ | Ψ � unentangled If c i all equal ⇒ | Ψ � maximally entangled A natural measure is the entanglement entropy ( ρ A = Tr B ρ ) � c 2 n log c 2 S A ≡ − Tr ρ A log ρ A = − n = S B n Pasquale Calabrese Entanglement and CFT

  6. Entanglement meets cond-mat and StatPhys | Ψ � is the ground state of a local Hamiltonian H Is entanglement special? Yes, if A corresponds to a spatial subset (Area law) Pasquale Calabrese Entanglement and CFT

  7. Entanglement meets cond-mat and StatPhys | Ψ � is the ground state of a local Hamiltonian H Is entanglement special? Yes, if A corresponds to a spatial subset (Area law) In a 1+1D CFT Holzhey, Larsen, Wilczek ’94 S A = c 3 ln ℓ This is the most effective way to measure the central charge c Pasquale Calabrese Entanglement and CFT

  8. Path integral and Riemann surfaces PC and J Cardy ’04 � Φ 1 ( x ) | ρ A | Φ 2 ( x ) � = Pasquale Calabrese Entanglement and CFT

  9. Path integral and Riemann surfaces PC and J Cardy ’04 � Φ 1 ( x ) | ρ A | Φ 2 ( x ) � = Tr ρ n A = Tr ρ n A = for n integer is the partition function on a n -sheeted Riemann surface R n , 1 ∂ ∂ n Tr ρ n Replica trick: S A = − lim A n → 1 Pasquale Calabrese Entanglement and CFT

  10. Riemann surfaces and CFT PC and J Cardy ’04 The Riemann surface R n , 1 is topological equivalent to the complex plane on which is mapped by � 1 / n � w → ζ = w − u w − v ; ζ → z = ζ 1 / n ⇒ w → z = w − u w − v = c n | u − v | − c 6 ( n − 1 / n ) Tr ρ n A = | u − v | = ℓ ∂ A = c ∂ n Tr ρ n ⇒ S A = − lim 3 log ℓ n → 1 Pasquale Calabrese Entanglement and CFT

  11. More difficult problem A = Disconnected regions: Pasquale Calabrese Entanglement and CFT

  12. More difficult problem A = Disconnected regions: More complex Riemann surface: R n , 2 of genus ( n − 1) [ R n , N has genus ( n − 1)( N − 1)] A , S A ? Tr ρ n Pasquale Calabrese Entanglement and CFT

  13. Disjoint intervals: History A = [ u 1 , v 1 ] ∪ [ u 2 , v 2 ] In 2004 we obtained « c 6 ( n − 1 / n ) „ | u 1 − u 2 || v 1 − v 2 | Tr ρ n A = c 2 n | u 1 − v 1 || u 2 − v 2 || u 1 − v 2 || u 2 − v 1 | Tested for free fermions in different ways Casini-Huerta, Florio et al. Pasquale Calabrese Entanglement and CFT

  14. Disjoint intervals: History A = [ u 1 , v 1 ] ∪ [ u 2 , v 2 ] In 2004 we obtained « c 6 ( n − 1 / n ) „ | u 1 − u 2 || v 1 − v 2 | Tr ρ n A = c 2 n | u 1 − v 1 || u 2 − v 2 || u 1 − v 2 || u 2 − v 1 | Tested for free fermions in different ways Casini-Huerta, Florio et al. For more complicated theories in 2008 Furukawa-Pasquier-Shiraishi and Caraglio-Gliozzi showed that it is incorrect! « c 6 ( n − 1 / n ) „ | u 1 − u 2 || v 1 − v 2 | Tr ρ n A = c 2 F n ( x ) n | u 1 − v 1 || u 2 − v 2 || u 1 − v 2 || u 2 − v 1 | x = ( u 1 − v 1 )( u 2 − v 2 ) ( u 1 − u 2 )( v 1 − v 2 ) = 4 − point ratio Pasquale Calabrese Entanglement and CFT

  15. Compactified boson (Luttinger) Furukawa Pasquier Shiraishi � 4 F 2 ( x ) = θ 3 ( ητ ) θ 3 ( τ/η ) � θ 2 ( τ ) η ∝ R 2 , x = [ θ 3 ( τ )] 2 θ 3 ( τ ) Compared against exact diagonalization in XXZ chain Pasquale Calabrese Entanglement and CFT

  16. Compactified boson PC Cardy Tonni ’09 � � � � F n ( x ) = Θ 0 | η Γ Θ 0 | Γ /η Using old results of CFT � � ] 2 on orbifolds Dixon et al 86 [Θ 0 | Γ Γ is an ( n − 1) × ( n − 1) matrix n − 1 2 i „ π k « » 2 π k – X Γ rs = sin β k n cos n ( r − s ) n n k = 1 β y = H y (1 − x ) , H y ( x ) = 2 F 1 ( y , 1 − y ; 1; x ) with H y ( x ) X ˆ ˜ Riemann theta function Θ( z | Γ) ≡ exp i π m · Γ · m + 2 π im · z m ∈ Z n − 1 Pasquale Calabrese Entanglement and CFT

  17. Compactified boson PC Cardy Tonni ’09 � � � � F n ( x ) = Θ 0 | η Γ Θ 0 | Γ /η Using old results of CFT � � ] 2 on orbifolds Dixon et al 86 [Θ 0 | Γ Γ is an ( n − 1) × ( n − 1) matrix n − 1 2 i „ π k « » 2 π k – X Γ rs = sin β k n cos n ( r − s ) n n k = 1 β y = H y (1 − x ) , H y ( x ) = 2 F 1 ( y , 1 − y ; 1; x ) with H y ( x ) X ˆ ˜ Riemann theta function Θ( z | Γ) ≡ exp i π m · Γ · m + 2 π im · z m ∈ Z n − 1 • F n ( x ) invariant under x → 1 − x and η → 1 /η • We are unable to analytic continue to real n for general x and η • Only for η ≪ 1 and for x ≪ 1 Pasquale Calabrese Entanglement and CFT

  18. Compactified boson II PC Cardy Tonni η ≪ 1 1 ( x ) = 1 2 ln η − D ′ 1 ( x ) + D ′ 1 (1 − x ) − F ′ 2 with Z i ∞ π z dz D ′ 1 ( x ) = − sin 2 π z log H z ( x ) i − i ∞ Pasquale Calabrese Entanglement and CFT

  19. Compactified boson III PC Cardy Tonni x ≪ 1 � x � x � α � 2 α P (2) F n ( x ) = 1+2 n P n +2 n n + · · · α = min ( η, 1 /η ) 4 n 2 4 n 2 n − 1 n − 1 [sin ( π l / n )] 2 α = 1 l / n 1 X X P n = [sin ( π l / n )] 2 α 2 l =1 l =1 1 ( x ) = 2 1 − 2 α x α P ′ − F ′ 1 + . . . Pasquale Calabrese Entanglement and CFT

  20. Compactified boson III PC Cardy Tonni x ≪ 1 � x � x � α � 2 α P (2) F n ( x ) = 1+2 n P n +2 n n + · · · α = min ( η, 1 /η ) 4 n 2 4 n 2 n − 1 n − 1 [sin ( π l / n )] 2 α = 1 l / n 1 X X P n = [sin ( π l / n )] 2 α 2 l =1 l =1 1 ( x ) = 2 1 − 2 α x α P ′ − F ′ 1 + . . . √ π Γ( α + 1) NEW P ′ 1 = α + 3 � � 4Γ 2 Pasquale Calabrese Entanglement and CFT

  21. Compactified boson III PC Cardy Tonni x ≪ 1 � x � x � α � 2 α P (2) F n ( x ) = 1+2 n P n +2 n n + · · · α = min ( η, 1 /η ) 4 n 2 4 n 2 n − 1 n − 1 [sin ( π l / n )] 2 α = 1 l / n 1 X X P n = [sin ( π l / n )] 2 α 2 l =1 l =1 1 ( x ) = 2 1 − 2 α x α P ′ − F ′ 1 + . . . √ π Γ( α + 1) NEW P ′ 1 = α + 3 � � 4Γ 2 n − 1 L − 2 L − ℓ 1 − 1 = n NEW 2 h i P (2) X X X Q 2 α + 2 Q 2 α n 1 2 2 L =3 ℓ 1 =1 ℓ 2 =1 sin( π ( L − ℓ 1 ) / n ) sin( π ( L − ℓ 2 ) / n ) Q 1 ≡ sin( πℓ 1 / n ) sin( πℓ 2 / n ) sin( π L / n ) sin( π ( L − ℓ 1 − ℓ 2 ) / n ) sin( πℓ 1 / n ) sin( πℓ 2 / n ) Q 2 , ≡ sin( π ( L − ℓ 1 ) / n ) sin( π ( L − ℓ 2 ) / n ) sin( π L / n ) sin( π ( L − ℓ 1 − ℓ 2 ) / n ) P ( m ) have an OPE interpretation (for m = 1 [Headrick ’10]) n Pasquale Calabrese Entanglement and CFT

  22. The XX model Fagotti PC ’10 The RDM of two intervals is not trivial because of JW string Igloi-Peschel n ( x ) = F CFT ( x ) + ( − ) ℓ ℓ − δ n f n ( x ) + . . . F lat CFT OK and δ n = 2 / n n Pasquale Calabrese Entanglement and CFT

  23. The XX model with Open BC Fagotti PC ’10 F n ( x ) = 1 because it is free fermions! Pasquale Calabrese Entanglement and CFT

  24. The Ising model Alba Tagliacozzo PC ’09 Monte Carlo for 2D and TTN for 1D Tr ρ 2 A MC Tr ρ 2 A TTN Large monotonic corrections to the scaling! FSS analysis confirms: " „ (1 + √ x )(1 + √ 1 − x ) # 1 / 2 « 1 / 2 1 + x 1 / 4 +((1 − x ) x ) 1 / 4 +(1 − x ) 1 / 4 F 2 ( x ) = √ 2 2 Pasquale Calabrese Entanglement and CFT

  25. The Ising model Alba Tagliacozzo PC ’09 Von Neumann Pasquale Calabrese Entanglement and CFT

  26. The Ising model Fagotti PC ’10 δ n = 1 / n because of Ising fermion! Pasquale Calabrese Entanglement and CFT

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend