entanglement entropy in two dimensional conformal field
play

Entanglement entropy in two-dimensional conformal field theory - PowerPoint PPT Presentation

Entanglement entropy in two-dimensional conformal field theory Pawe Grabiski University of Wrocaw 22 July 2016 Entanglement in 2dCFT Pawe Grabiski 1/12 Entanglement Density operator: = | | Reduced


  1. Entanglement entropy in two-dimensional conformal field theory Paweł Grabiński University of Wrocław 22 July 2016 Entanglement in 2dCFT Paweł Grabiński 1/12

  2. Entanglement ◮ Density operator: ρ = | ψ � ⊗ � ψ | ˆ ◮ Reduced density operator: ρ A = tr A ˆ ˆ ρ ◮ Separable subsystems: | ψ � AB = | φ � A ⊗ | χ � B ◮ Entangled subsystems: √ p i | i � A ⊗ | i � B � | ψ � AB = i ◮ Entropy of entanglement(von Neuman Entropy): � S A = − tr (ˆ ρ A log ˆ ρ A ) = − p i log p i i Entanglement in 2dCFT Paweł Grabiński 2/12

  3. Density operator in QFT Density operator in Quantum Field Theory can be defined as: � ρ ( φ 1 , φ 2 ) = Z − 1 D φ e − S E [ φ ] (1) F ( φ 1 ,φ 2 ) φ ( β, x ) τ [ 0 , β ] × R S 1 × R x x β φ ( 0 , x ) = φ ( β, x ) φ ( 0 , x ) τ 0 Entanglement in 2dCFT Paweł Grabiński 3/12

  4. Reduced density operator in QFT Reduced density operator can be defined as: � ρ ( φ 1 , φ 2 ) = Z − 1 D φ e − S E [ φ ] S\ A φ (0 , x ) = φ ( β, x ) φ ( β, x ) � = φ (0 , x ) . B A . B τ x Entanglement in 2dCFT Paweł Grabiński 4/12

  5. 2d Conformal Field Theory ◮ Conformal Transformation: µν ( x ′ ) = ∂ x α ∂ x β g ′ ′ ν g µν ( x ) = Ω( x ) g µν ( x ) , µ, ν = 1 , 2 ′ µ ∂ x ∂ x ◮ Primary Fields Transformation in CFT( w = f ( z ) ): � − ¯ � − h � d ¯ h � dw w φ ′ ( w , ¯ w ) = φ ( z , ¯ z ) d ¯ dz z ◮ Global Ward’s Identities ( i = − 1 , 0 , 1 ) from SL ( 2 , C ) : n � � � z i z j ∂ j + h j ( i + 1 ) � φ ( z 1 , ¯ z 1 ) . . . φ ( z j , ¯ z j ) . . . φ ( z n , ¯ z n ) � = 0 j j = 1 ◮ 2-point correlation function from GWI: z 1 ) � = A ( z 1 − z 2 ) − 2 h ( ¯ z 2 ) − 2 ¯ h � φ ( z 1 , ¯ z 1 ) φ ( z 1 , ¯ z 1 − ¯ Entanglement in 2dCFT Paweł Grabiński 5/12

  6. Entropy and Replica trick ◮ Renyi Entropy: 1 S ( n ) ρ n = − n − 1 log tr ˆ A A ◮ Entanglement Entropy: = − d n → 1 S ( n ) ρ n S A = lim dn tr ˆ A | n = 1 a ◮ Replica trick ( T = 0 case): Entanglement in 2dCFT Paweł Grabiński 6/12

  7. Entanglement entropy at T = 0 ◮ From non-trivial geometry to Twist fields: n � T ( w , i ) � L , R n = n � T ( w ) � L , R n = � T n ( z ) T ( a , a ) ¯ T ( b , b ) � L n , C � �T ( a , a ) ¯ T ( b , b ) � L n , C i = 1 ◮ Our conformal transformation: � 1 � w − a n f : R n → C , C ∋ z = f ( w ) = w ∈ R n , w − b ◮ From transformation rule of energy-momentum tensor: � dz � 2 T ( z ) + c T ( w ) = 12 { z , w } dw � T ( z ) � L n , C = 0 ⇒ � T ( w ) � L , R n = c ( n 2 − 1 ) ( a − b ) 2 24 n 2 ( w − a ) 2 ( w − b ) 2 Entanglement in 2dCFT Paweł Grabiński 7/12

  8. Entropy for interval A = [ a , b ] at T = 0 ◮ Local Ward’s Identities: � T ( z ) φ ( z 1 , ¯ z 1 ) . . . φ ( z n , ¯ z n ) � = n � 1 � h i � ( z − z i ) 2 + ∂ i � φ ( z 1 , ¯ z 1 ) . . . φ ( z n , ¯ z n ) � z − z i i = 1 h = c ( n 2 − 1 ) ◮ From Local Ward’s Identities we get: h = ¯ 24 n ◮ Trace of the reduced density operator takes form( α ( n ) = A Z n ): A } = �T ( a , a ) ¯ T ( b , b ) � L n , C = α ( n )( a − b ) − c ( n 2 − 1 ) tr { ρ n 6 n Z n ◮ Entropy of interval A = [ a , b ] at T = 0: S A = c α ( 1 ) ln ( a − b ) − d α dn | n = 1 , α ( 1 ) = 1 3 Entanglement in 2dCFT Paweł Grabiński 8/12

  9. Results for interval in T > 0 ◮ Field transformation rule: 2 h 2 h � � � � dw dw �T ( u , u ) ¯ �T ( a , a ) ¯ � � � � T ( v , v ) � L , cyl = T ( b , b ) � L n , C � � � � dz dz � � � � a b ◮ Mapping g : C → R × S z = g ( w ) = 2 π β log ( w ) ◮ Form of correlation function: �� − 4 h � β � π �T ( u , u ) ¯ T ( v , v ) � L , cyl = A β ( u − v ) π sh ◮ Entropy of interval A = [ a , b ] in T > 0: � β � π �� S A = c − d α 3 ln β ( u − v ) dn | n = 1 π sh Entanglement in 2dCFT Paweł Grabiński 9/12

  10. Interval on a circle at T = 0 Performing rotation of cylinder( β = iL ): S A = c � L � π �� − d α 3 ln π sin L ( u − v ) dn | n = 1 Entropy of entanglment 0.2 0.1 l 0.2 0.4 0.6 0.8 1.0 L � 0.1 � 0.2 � 0.3 Entanglement in 2dCFT Paweł Grabiński 10/12

  11. Statistical models correspondance 2-dimensional Conformal Field Theory � Statistical Models at Critical Point 0.8 0.6 S n (L)-log(L/ π)/3 0.4 n=1 0.2 n=2 0 n=3 n=4 -0.2 n=5 n=6 -0.4 0 0.2 0.4 0.6 0.8 1 n/L Example: Quantum 1d Ising model with transverse field with hamiltonian: N − 1 � J S x i S x i + 1 + hS z � � H = − i i = 1 Entanglement in 2dCFT Paweł Grabiński 11/12

  12. Literature Thank You! P. Di Francesco, P. Mathieu, D. Senechai, Conformal Field Theory , Springer-Verlag, New York 1997 P. Calabrese, J. Cardy, Entanglement Entropy and Quantum Field Theory F. Leja, Analytic and harmonic functions , PTW, Warsaw 1952 Entanglement in 2dCFT Paweł Grabiński 12/12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend