mesoscale processes in the climate system modeling and
play

Mesoscale Processes in the Climate System: Modeling and - PowerPoint PPT Presentation

International Conference on Environmental Observations, Modeling International Conference on Environmental Observations, Modeling and Information Systems (ENVIROMIS ENVIROMIS- -200 2008) 8) and Information Systems ( June, 28 28


  1. International Conference on Environmental Observations, Modeling International Conference on Environmental Observations, Modeling and Information Systems (ENVIROMIS ENVIROMIS- -200 2008) 8) and Information Systems ( June, 28 28 – – July, July, 5 5, , 2008, 2008, Tomsk Tomsk, , Russia Russia June, Mesoscale Processes in the Climate System: Modeling and Parameterization V.N. Lykosov Lykosov V.N. Institute for Numerical Mathematics, RAS M.V. Lomonosov Moscow State University E-mail: lykossov@inm.ras.ru lykossov@inm.ras.ru

  2. Climate System (T. Slingo, 2002)

  3. Objectives of climate modeling • To reproduce both “climatology” (seasonal and monthly means) and statistics of variability: intra-seasonal (monsoon cycle, characteristics of storm-tracks, etc.) and climatic (dominated modes of inter-annual variability such as El-Nino phenomenon or Arctic Oscillation) • To estimate climate change due to anthropogenic activity • To reproduce with high degree of details regional climate: features of hydrological cycle, extreme events, impact of global climate change on regional climate, environment and socio- economic relationships • Fundamental question (V.P. Dymnikov): what climatic parameters and in what accuracy must by reproduced by a mathematical model of the climate system to make its sensitivity to small perturbations of external forcing close to the sensitivity of the actual climate system?

  4. John von Neumann (1903 – 1957) J.G. Charney, R. Fjortoft, J. von Neuman. "Numerical integration of the barotropic equation", 1950, Tellus, 2, 237-254. John von Neumann had recognized weather prediction as a prime candidate for application of electronic computers. In early 1948 he invited Jule Charney to head the meteorology group in his Electronic Computer Project. 4

  5. Joseph Smagorinsky (1924 – 2005) “General circulation experiments with the primitive equations. 1. Basic experiment", 1963, Mon. Wea. Rev., 91, 98-164. • Smagorinsky's key insight was that the increasing power of computers would allow one to move toward the simulation of the Earth's climate. • Smagorinsky guided the development of the first model of atmospheric general circulation taking into account basic nonadiabatic factors. 5

  6. МОДЕЛИРОВАНИЕ ОБЩЕЙ ЦИРКУЛЯЦИИ АТМОСФЕРЫ И ОКЕАНА В ВЦ СОАН СССР И ИВМ РАН 1973 г .: Решение Отделения океанологии , физики атмосферы и географии АН СССР о разработке математических моделей климата , основанных на моделях общей циркуляции атмосферы и океана . Новые идеи : использование законов сохранения и методов расщепления , реализация на параллельных вычислительных системах ( тогда уже !). 1974 г .: Создание в ВЦ СОАН СССР лаборатории общей циркуляции атмосферы и океана ( зав . лаб . В . П . Дымников ). 1980 г .: Организация Г . И . Марчуком в Москве Отдела ( с 1991 г . – Институт ) вычислительной математики АН СССР и кафедры моделирования физических процессов в МФТИ . Г . И . Марчук , В . П . Дымников , В . Б . Залесный , В . Н . Лыкосов , В . Я . Галин . " Математическое моделирование общей циркуляции атмосферы и океана ". - Л ., Гидрометеоиздат , 1984, 320 с .

  7. Дальнейшее развитие моделей циркуляции атмосферы и океана было направлено на создание на их основе глобальной климатической модели . Были разработаны новые версии этих моделей , обладающие высоким пространственным разрешением и адаптированных к новым параллельным вычислительным системам . 2002 г .: модель климатической системы , построенная на основе объединения моделей общей циркуляции атмосферы и океана без использования процедуры коррекции потоков на поверхности океана , использована в исследованиях по чувствительности климата к изменениям в содержании парниковых газов . 2005 г .: В . П . Дымников , В . Н . Лыкосов , Е . М . Володин , В . Я . Галин , А . В . Глазунов , А . С . Грицун , Н . А . Дианский , М . А . Толстых , А . И . Чавро . Моделирование климата и его изменений . Сб . – « Современные проблемы вычислительной математики и математического моделирования », т . 2, М .: Наука .

  8. В настоящее время процесс создания глобальных климатических моделей происходит повсеместно . Этот “ параллелизм ” необходим для контроля воспроизводимости получаемых с их помощью результатов ( международные программы AMIP - Atmospheric Model Intercomparison Project и CMIP - Coupled Model Intercomparison Project).

  9. Near-the surface winter air temperature: simulated by the INM model (top) and observed (bottom)

  10. Kattsov, V.M., J.E. Walsh, W.L. Chapman, V.A. Govorkova, T.V. Pavlova, and X. Zhang, 2007: Simulation and projection of arctic freshwater budget components by the IPCC AR4 global climate models. J.Hydrometeor . , v. 8, p. 571-589 Ob: P and P-E annual means (1960-1989) 2 1,8 1,6 1,4 mm/day 1,2 P 1 P-E 0,8 0,6 0,4 0,2 0 ECHAM5/MPI-OM CNRM-CM3 GISS-AOM INM-CM3.0 MRI-CGCM2.3.2 UKMO-HadCM3 UKMO-HadGEM1 Serreze BCCR-BCM2.0 CCSM3 CGCM3.1(T47) CGCM3.1(T63) CSIRO-Mk3.0 GFDL-CM2.0 GFDL-CM2.1 IPSL-CM4 ECHO-G MIROC3.2(hires) PCM GISS-EH GISS-ER MIROC3.2(medres) mean-21 mean-19

  11. Possible changes in near-the-surface winter air temperature to end of XXI century (averaged for 2081-2100) in comparison with observations for end of XX century (averaged for 1981-2000) based on results of the INM climate model (scenario A1B)

  12. Changes in length of vegetation period, days (top) and in number of frosty days (bottom) in 2081-2100 under scenario А 1 В with respect to 1981-2000 as follows from INM climate model experiments

  13. Spatial distribution of continuous (violet) and sporadic (blue) permafrost as follows from INM climate model experiments: in 1981-2000 (top), 2081-2100 under scenario В 1 (middle) and in 2081-2100 under scenario А 2 (bottom).

  14. Regional scale modeling and assessment • Atmospheric modeling, e.g. using global climate model with improved spatial resolution in the region under consideration and non-hydrostatic mesoscale models: parameterization of mesoscale variability • Catchment modeling, e.g. constructing models of river dynamics: parameterization of hydrological cycle • Vegetation modeling, e.g. models of vegetation dynamics: parameterization of biogeochemical and hydrological cycles • Soil (including permafrost) modeling, e.g. models of snow and frozen ground mechanics: parameterization of hydrological and biogeochemical cycles • Coupled regional models • Air and water quality modeling • Statistical and dynamic downscaling (e.g. regional projections of global climate change patterns)

  15. Mesoscale processes • Weather systems smaller than synoptic scale systems (~ 1000 and more km) but larger than microscale (< 1 km) and storm-scale (~ 1 km) cumulus systems. • Horizontal dimensions: from about 2 km to several hundred kilometers. • Examples of mesoscale weather systems: sea and lake breezes, squall lines, katabatic flows, mesoscale convective complexes. • Vertical velocity equals or exceeds horizontal velocities in mesoscale meteorological systems due to nonhydrostatic processes.

  16. Subclasses Mesoscale processes are divided into 3 subclasses (Orlanski, 1975): • Meso-gamma 2-20 km, deals with phenomena like thunderstorm convection, complex terrain flows (at the edge to microscale), precipitation bands • Meso-beta 20-200 km deals with phenomena like sea breezes, lake effect snow storms, polar cyclones • Meso-alpha 200-2000 km fronts, deals with phenomena like squall lines, mesoscale convective systems (MCS, a large cluster of storms), tropical cyclones at the edge of synoptic scale

  17. БЭСМ -6 Среднее быстродействие - до 1 млн . одноадресных команд / с Длина слова - 48 двоичных разрядов и два контрольных разряда Рабочая частота - 10 МГц , оперативная память – 32768 слов

  18. Earth System Model R. Loft. The Challenges of ESM Modeling at the Petascale

  19. Revolutionary Perspective: from climate models to Earth System Models

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend