digital signal processing for radio detection e g of
play

Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays) - PowerPoint PPT Presentation

Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays) KSETA Workshop Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin | 17.10.2013 K ARLSRUHE I NSTITUTE OF T ECHNOLOGY (KIT) 80 channel 1 60 channel 2 40 Signal (


  1. Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays) KSETA Workshop Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin | 17.10.2013 K ARLSRUHE I NSTITUTE OF T ECHNOLOGY (KIT) 80 channel 1 60 channel 2 40 Signal ( µ V) 20 0 -20 -40 -60 -80 0 1000 2000 3000 4000 5000 Time (ns) www.kit.edu KIT – University of the State of Baden-Wuerttemberg and National Laboratory of the Helmholtz Association

  2. Cosmic Rays T. Huege Cosmic Rays Radio Emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays)17.10.2013 2/9

  3. Cosmic Rays What are they made of? 87 % protons 12 % He nuclei 1 % heavy nuclei Cosmic Rays Radio Emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays)17.10.2013 3/9

  4. Cosmic Rays RADIO R. Engel Cosmic Rays Radio Emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays)17.10.2013 4/9

  5. Cosmic Rays Cosmic Rays Radio Emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays)17.10.2013 5/9

  6. Cosmic Rays Cosmic Rays Radio Emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays)17.10.2013 6/9

  7. Radio Emission Prototypes at Auger LOPES 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 … … YAKUTSK TREND CODALEMA [T. Huege] Cosmic Rays Radio Emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays)17.10.2013 7/9

  8. Radio Emission Tunka-REX AERA 2010 2011 2012 2013 LOFAR [T. Huege] Cosmic Rays Radio Emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays)17.10.2013 8/9

  9. Radio emission from air showers Coherent emission at MHz frequencies Two relevant emission mechanisms: Geomagnetic effect Askaryan effect H. Schoorlemmer K.D. de Vries Induction of time-varying current Time-varying net charge of shower Dominant process Relative strength: 14 % Cosmic Rays Radio Emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital Signal Processing for Radio Detection (e.g. of Cosmic Rays)17.10.2013 9/9

  10. Propagation and detection of radio emission Tim Huege Vertical 10 17 eV proton-induced air shower at the site of the Pierre Auger Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  11. Propagation and detection of radio emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  12. Propagation and detection of radio emission Auger Youngsters Meeting 2013, Kathrin Reibelt Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  13. Propagation and detection of radio emission Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  14. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  15. Fourier transform Forward Discrete Fourier Transform: 1 N   2 / [ ] [ ]    i kn N X k x i e  0 n Inverse Discrete Fourier Transform: 1 1 N   2 / [ ] [ ]   i kn N x n X k e N  0 k Amplitude and phase respectively are: 2  [ ] / Re( [ ]) Im( [ ]) 2 ) /  X k N X k X k N Im [ ]   X k arg( [ ]) arctan    X k   Re [ ] X k   Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  16. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  17. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  18. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  19. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  20. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  21. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  22. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  23. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  24. Fourier transform The Scientist and Engineer's Guide to Digital Signal Processing By Steven W. Smith, Ph.D. Roman Hiller, Olga Kambeitz, Dmitriy Kostunin, Dmytro Rogozin – Digital signal processing for Radio Detetction - e.g.of Cosmic Rays 17.10.2013

  25. Hardware response Oct. 17th 2012 –

  26. Description Linearity f ( x + y ) = f ( x ) + f ( y ) and f ( ax ) = a · f ( x ) → f ( sin ( ω t )) = α · sin ( ω t + ϕ ) S 21 = α · e i ϕ e.g. from network analyzer 40 20 0 G (dB) − 20 − 40 − 60 − 80 0 20 40 60 80 100 120 f (MHz) Oct. 17th 2012 –

  27. Pulse response f(MHz) f(MHz) Oct. 17th 2012 –

  28. Deconvolution Linearity → uniqueness Convolution theorem f ADC ( t ) = f in ( t ) ∗ g filter ( t ) f ADC ( t ) ∗ f ( t ) = F − 1 ( f ADC ( ν ) · g filter ( ν )) reality: cut attenuation region, f real = f in + f N 0 . 10 0 . 05 0 . 05 S(V) S(V) 0 . 00 0 . 00 − 0 . 05 − 0 . 05 − 0 . 10 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 1 . 6 1 . 8 2 . 0 2 . 2 2 . 4 t(ns) × 10 3 t(ns) × 10 3 Oct. 17th 2012 –

  29. Digital filtering

  30. Raw data channel 1 Signal ( µ V/MHz) channel 2 10 1 0.1 30 40 50 60 70 80 Frequency (MHz) channel 1 200 channel 2 Signal ( µ V) 100 0 -100 -200 0 1000 2000 3000 4000 5000 Time (ns)

  31. Median filter channel 1 Signal ( µ V/MHz) channel 2 10 1 0.1 30 40 50 60 70 80 Frequency (MHz) channel 1 200 channel 2 Signal ( µ V) 100 0 -100 -200 0 1000 2000 3000 4000 5000 Time (ns)

  32. Bandstop filter channel 1 Signal ( µ V/MHz) channel 2 10 1 0.1 30 40 50 60 70 80 Frequency (MHz) channel 1 200 SNR=12.8 !!! channel 2 Signal ( µ V) 100 0 -100 -200 0 1000 2000 3000 4000 5000 Time (ns)

  33. Exercise 1 Draw a Low Pass Filter in frequency and time domain. Explain how it works in frequency/time domain? Oct. 17th 2012 –

  34. Exercise 1 0.08 a . Low-pa ss 0.06 passband plitude transition Amplitude band 0.04 Am 0.02 stopband 0.00 Fre que ncy -0.02 0 10 20 30 Sample number S Oct. 17th 2012 –

  35. Exercise 2 Draw a High Pass filter in frequency and time domain. Tipp: For the time domain use the linearity of the fourier transform to derive the high pass from known spectra (low pass and ?). Explain how it works in frequency/time domain? Oct. 17th 2012 –

  36. Exercise 2 1.25 b. High-pa ss 1.00 plitude Amplitude 0.75 0.50 Am 0.25 0.00 Fre que ncy -0.25 0 10 20 30 Sample number S Oct. 17th 2012 –

  37. Exercise 3 Explain, why both signals have the same spectrum. 0.08 0.5 0.06 0.4 0.04 0.3 0.02 0.2 0.00 0.02 0.1 0.04 0.0 0.06 0.1 0.08 0.10 0.2 0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000 t(ns) t(ns) FFT 2 10 1 10 0 10 -1 10 -2 10 -3 10 0 20 40 60 80 100 f(MHz) Oct. 17th 2012 –

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend