determination of the and nucleus optical potential
play

Determination of the - and '-nucleus optical potential Mariana - PowerPoint PPT Presentation

Determination of the - and '-nucleus optical potential Mariana Nanova for the CBELSA/TAPS Collaboration Outline: motivation exp. approaches to study the in-medium properties of mesons experimental results on the real and


  1. Determination of the ω - and η '-nucleus optical potential Mariana Nanova for the CBELSA/TAPS Collaboration Outline: ◆ motivation ◆ exp. approaches to study the in-medium properties of mesons ◆ experimental results on the real and imaginary part of the ω - and η ’-nucleus optical potential ◆ summary & outlook MESON2016 Cracow, 2th - 7th June 2016 *funded by the DFG within SFB/TR16

  2. baryons and mesons ◆ QCD vacuum as a Bose-Einstein condensate of qq − ◆ all states (particles) are created out of the vacuum state (“excitations of the QCD-vacuum”) ◆ the ground-state structure influences the particle properties if the QCD ground state changes in a medium ⇒ properties of hadrons (“excited states”) are also expected to change 2

  3. hadrons in the medium how do the hadron properties (mass, width) change in a dense nuclear medium ?? pioneering papers: V. Bernard and U.-G. Meißner, NPA 489 (1988) 647 “Brown-Rho Scaling” m ≈ < ¯ m ? qq > ? G.E.Brown and M. Rho, ≈ 0 . 8( ρ ≈ ρ 0 ) < ¯ PRL 66 (1991) 2720 qq > 0 T.Hatsuda and S. Lee, m � = (1 − α ρ V ); α ≈ 0 . 18 PRC 46 (1992) R34 m V ρ 0 QCD sum rule approach: drop of ρ , ω mass by about 15% at ρ = ρ 0 widespread theoretical and experimental activities to search for in-medium modifications of hadrons 3

  4. hadronic models: predictions for η ’ in-medium mass NJL-model NJL-model linear σ model H. Nagahiro et. al, V. Bernard and U.-G. Meissner, S. Sakai and D. Jido Phys. Rev. C 74 (2006) 045203 Phys. Rev.D 38 (1988) 1551 PRC 88 (2013) 064906 SU(3) SU(2) Δ m η ’ ( ρ 0 ) ≈ − 80 MeV QMC-model S. Bass and A. Thomas, almost no dependence of Δ m η ’ ( ρ 0 ) ≈ − 150 MeV PLB 634 (2006) 368 η ’ mass on density Δ m η ( ρ 0 ) ≈ +20 MeV Δ m η ’ ( ρ 0 ) ≈ − 40 MeV for θ ηη ’ = − 20 0 4

  5. hadronic models: predictions for ω -spectral functions F. Klingl et al., M. Lutz et al., NPA 610 (1997) 297; NPA 706 (2002) 437 P . Mühlich et al., NPA 780 (2006) 187 NPA 650 (1999) 299 spectral function for ω meson splitting into ω -like ◆ lowering of in-medium mass at rest: and N*N -1 mode ◆ broadening of resonance almost no mass shift; due to coupling to with increasing nuclear density strong in-medium broadening nucleon resonances Re(U) ≠ 0; Im(U) ≠ 0 Re(U) ≈ 0; Im(U) large mass shift ? experimental task: search for { } broadening? of hadronic spectral functions structures? 5

  6. meson-nucleus optical potential H. Nagahiro an S. Hirenzaki, U ( r ) = V ( r ) + iW ( r ) PRL 94 (2005) 232503 W ( r ) = − Γ 0 / 2 · ρ ( r ) V ( r ) = ∆ m ( ρ 0 ) · ρ ( r ) ρ 0 = − 1 2 · ~ c · ρ ( r ) · σ inel · β ρ 0 real part imaginary part ⬄ ⬄ lifetime shortened in-medium mass modification in-medium width, absorption inelastic cross section mass and lifetime (width) may be changed in the medium 6

  7. experimental approaches to determine the meson-nucleus optical potential U ( r ) = V ( r ) + iW ( r ) imaginary part real part W ( r ) = − Γ 0 / 2 · ρ ( r ) V ( r ) = ∆ m ( ρ 0 ) · ρ ( r ) ρ 0 ρ 0 = − 1 2 · ~ c · ρ ( r ) · σ inel · β ◆ line shape analysis ◆ transparency ratio measurement ◆ excitation function ◆ momentum distribution σ γ A → η 0 X T A = ◆ meson-nucleus bound states A · σ γ N → η 0 X D. Cabrera et al., NPA 733 (2004)130 7

  8. CBELSA/TAPS experiment ω→π 0 γ→ 3 γ E γ =0.7-3.1 GeV E γ =0.7 - 3.1 GeV MiniTAPS )] 2 [1/(4 MeV/c 2 m=792.5 ± 0.4 MeV/c Forward Plug C photon beam 216 BaF 2 2 σ =25.8 ± 0.3 MeV/c 4 10 γ 0 π N σ m σ m ≈ 3% m ≈ 3% m 64456 counts 64456 counts 3 10 600 650 700 750 800 850 900 950 2 M [MeV/c ] Crystal Barrel 0 π γ η ’ →π 0 π 0 η→ 6 γ 1320 CsI )] 2 1800 [1/(6 MeV/c 2 Nb m=957.6 0.5 MeV/c ± 2 1600 =11.8 0.3 MeV/c σ ± 1400 η 0 solid target: 12 C and 93 Nb π 0 1200 3177 counts π N 1000 4 π photon detector: ideally suited for 800 identification of multi-photon final states 600 σ m ω→π 0 γ→ 3 γ BR 8.2 % 400 3177 counts ≈ 1% m 200 η ’ →π 0 π 0 η→ 6 γ BR 8.5% 0 850 900 950 1000 1050 1100 1150 8 2 M [MeV/c ] 0 0 π π η

  9. The real part of the meson-nucleus optical potential 9

  10. the real part of the ω -nucleus potential ω→π 0 γ J. Weil, U. Mosel and V. Metag, PLB 723 (2013 ) 120 sensitive to nuclear density at production point and not at decay point ◆ measurement of the excitation function ◆ momentum distribution of the meson: of the meson in case of dropping mass - when leaving the in case of dropping mass - nucleus hadron has to become on-shell; higher meson yield for given √ s mass generated at the expense of kinetic because of increased phase space energy due to lowering of the production threshold ➯ downward shift of momentum distribution ➯ cross section enhancement π 0 γ momentum distribution π 0 γ excitation function γ + 93 Nb →π 0 γ +X E γ =0.9-1.3 GeV E γ thr 10

  11. excitation function for ω photoproduction off C comparison with GiBUU calculation CB/TAPS @ MAMI V. Metag et al., PPNP , 67 (2012) 530 M. Thiel et al., EPJA 49 (2013) 132 excitation function momentum distribution b] Carbon Carbon µ /A [ σ -1 ★ CB/TAPS@MAMI 10 ● CBELSA/TAPS GiBUU collisional broad. vacuum and mass shift collisional broadening(CB) V = 0 MeV CB+mass shift (-16%) V = -20 MeV -2 mass shift (-16%) V = -40 MeV 10 V = -55 MeV V = -94 MeV E γ thr V = -125 MeV 0.9 1 1.1 1.2 1.3 1.4 E [GeV] γ V( ρ = ρ 0 ) = − (42±17(stat)±20(syst)) MeV data not consistent with strong mass shift scenario ( Δ m/m ≈ -16%) 11

  12. excitation function and momentum distribution for η ' photoproduction off C CBELSA/TAPS @ ELSA data: M. Nanova et al., PLB 727 (2013) 417 γ C →η ’X calc.: E. Paryev, J. Phys. G 40 (2013) 025201 10 d σ η ’ /dp η ’ [ µ b/GeV/c] σ η ’ [ µ b] σ η ’ [ µ b] C data C data E γ =1500-2200 MeV σ tot σ diff 1 1 V( ρ = ρ 0 ) = 0 MeV σ η ’N =11 mb V( ρ = ρ 0 ) = -25 MeV V( ρ = ρ 0 ) = 0 MeV V( ρ = ρ 0 ) = -50 MeV V( ρ = ρ 0 ) = -25 MeV V( ρ = ρ 0 ) = -75 MeV V( ρ = ρ 0 ) = -100 MeV V( ρ = ρ 0 ) = -50 MeV V( ρ = ρ 0 ) = -150 MeV V( ρ = ρ 0 ) = -75 MeV -1 V( ρ = ρ 0 ) = -100 MeV -1 10 σ η ’N =11 mb 10 V( ρ = ρ 0 ) = -150 MeV E γ thr 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 1000 1500 2000 2500 p η ’ [GeV/c ] E γ [MeV] E γ [MeV] V η ’ (p η ’ ≈ 1.1 GeV/c; ρ = ρ 0 ) = − (32±11) MeV V η ’ ( ρ = ρ 0 ) = − (40±6) MeV data disfavour strong mass shifts 12

  13. excitation function and momentum distribution for η ' photoproduction off Nb CBELSA/TAPS @ ELSA γ Nb →η ’X M. Nanova et al., submitted to PRC for publication b] b/GeV/c] Nb Nb E =1.3 - 2.6 GeV µ γ [ σ ' η tot σ σ diff µ 10 / [ ' η P R E L I M I N A R Y /dp 10 σ ' η d ' η = 14 mb σ = 14 mb σ inel inel P R E L I M I N A R Y V( = ) = 0 MeV ρ ρ V( = ) = 0 MeV ρ ρ 0 0 V( = ) = - 25 MeV V( = ) = - 25 MeV ρ ρ ρ ρ 0 0 V( = ) = - 50 MeV ρ ρ V( = ) = - 50 MeV ρ ρ 0 0 V( = ) = - 75 MeV ρ ρ V( = ) = - 75 MeV ρ ρ 0 0 V( = ) = -100 MeV 1 ρ ρ V( = ) = -100 MeV ρ ρ 0 0 V( = ) = -150 MeV ρ ρ ' thr η 1 E V( = ) = -150 MeV ρ ρ 0 γ 0 1 1.5 2 2.5 0.5 1 1.5 2 2.5 p [GeV/c] E [GeV] γ ' η V η ' (p η ' ≈ 1.14 GeV/c; ρ = ρ 0 ) = − (41±22) MeV V η ' ( ρ = ρ 0 ) = − (46±15) MeV data disfavour strong mass shifts 13

  14. real part of ω -nucleus potential from ω kinetic energy ω CBELSA/TAPS @ ELSA γ E γ =1.25-3.1 GeV p 1 0 ≤θ p ≤ 11 0 the higher the attraction the lower the kinetic energy of the ω meson H. Nagahiro, priv. com. S. Friedrich et al., PLB 736 (2014) 26 [nb/MeV/sr] 90 1.5 [nb/MeV/sr] peak position [MeV] 2.2 Carbon d) 80 2.1 � � d � kin 1 2 Ω /dE 70 d kin � 1.9 0 � � /dE � � 2 � d 60 γ 1.8 0 π 0.5 σ 2 d 1.7 50 (V , W ) 1.6 0 0 - (156,70) MeV 0 - (100,70) MeV 40 1.5 - ( 50,70) MeV - ( 0,70) MeV - (-20,70) MeV 1.4 - (-50,70) MeV E kin =(60.5±7)MeV 30 -0.5 20 30 40 50 60 70 80 90 -150 -100 -50 0 50 E -782 [MeV] 0 potential depth [MeV] π γ -300 -200 -100 0 100 200 300 400 E -782 [MeV] 0 � � � � V ω (p ω ≈ 300 MeV/c; ρ = ρ 0 ) = − (15 ±35 ) MeV 14

  15. compilation of results for the real part of the ω - and η ’-nucleus optical potential ω η ’ C C excitation function excitation function Nb mom. distribution peak E kin average weighted average 80 60 40 20 0 20 − − − − 80 60 40 20 0 − − − − V [MeV] V [MeV] η 'A 'A η V ω A ( ρ = ρ 0 ) = V η ’A ( ρ = ρ 0 ) = − (29±19(stat)±20(syst)) MeV − (40±8(stat)±15(syst)) MeV 15

  16. The imaginary part of the meson-nucleus optical potential: momentum dependence 16

  17. momentum differential cross section for ω , η ’ produced off C, Nb E γ = 1.2- 2.9 GeV η ’ ω γ C,Nb → ω X γ C,Nb →η ’X 2.5 b/(GeV/c)] 0.25 b/(GeV/c)] C C Nb 2 Nb 0.2 µ µ /A [ /A [ ω /dp ' η /dp 1.5 0.15 σ σ d d P R E L I M I N A R Y P R E L I M I N A R Y 1 0.1 0.5 0.05 0 0 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500 p [MeV/c] p [MeV/c] ω ' η T Nb/C (p m ) = 12 ⦁ σ γ Nb → mX (p m ) m momentum differential cross sections ⇒ 93 ⦁ σ γ C → mX (p m ) 17

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend