nucleus optical potential and the search for mesic states
play

-nucleus optical potential and the search for mesic states in - PowerPoint PPT Presentation

-nucleus optical potential and the search for mesic states in photo nuclear reactions Mariana Nanova II. Physikalisches Institut for CBELSA/TAPS Collaboration Outline: motivation experimental approaches for determining the


  1. η ’-nucleus optical potential and the search for η ’ mesic states in photo nuclear reactions Mariana Nanova II. Physikalisches Institut for CBELSA/TAPS Collaboration Outline: ◆ motivation ◆ experimental approaches for determining the η ’-nucleus optical potential: - imaginary part of the potential - transparency ratio measurement - real part of the potential: excitation function of the η ’-meson momentum distribution ◆ search for η ’-nucleus bound states ◆ summary *funded by the DFG within SFB/TR16 YITP Workshop on Hadron in Nucleus, 31st Oct.-2nd Nov. 2013, Kyoto, Japan 1

  2. search for η ’-meson-nucleus bound states prediction of η ’- 12 C bound states and their width for different η ’ -meson nucleus potentials D. Jido et al., PRC 85 (2012) 032201 U( ρ ) = V( ρ ) + i W( ρ ) many states with width Γ << binding energy predicted more strongly bound states for deeper potentials W( ρ 0 ) ≈ -10 MeV from M. Nanova et al., PLB 710 (2012) 600 2

  3. Experimental approaches to determine the meson-nucleus optical potential meson-nucleus optical potential U ( r ) = V ( r ) + iW ( r ) meson mass shift meson absorption V ( r ) = ∆ m ( ρ 0 ) · ρ ( r ) W ( r ) = − Γ 0 / 2 · ρ ( r ) ρ 0 ρ 0 = − 1 2 · ~ c · ρ ( r ) · σ inel · β line shape analysis: direct determination of Δ m Transparency ratio measurement excitation function: σ γ A ! η 0 X T A = provides information about the depth of V(r) A · σ γ N ! η 0 X experimental observable to extract meson momentum distribution: the in-medium width of the meson provides information about the depth of V(r) meson-nucleus-bound states: direct determination of E bin ( Δ m) 3

  4. Crystal Barrel/TAPS@ELSA Experiment http://www.cb.uni-bonn.de photoproduction of η ’ meson beamtime 2003 beamtime 2009 E γ =0.7-3.1 GeV E γ =0.5-2.6 GeV MiniTAPS photon beam Forward Plug photon beam Crystal Barrel Crystal Barrel TAPS solid target: 12 C, 40 Ca, 93 Nb and 208 Pb solid target: 12 C 4 π photon detector: ideally suited for identification of multiphoton final states η ’ →π 0 π 0 η → 6 γ BR 8.1% 4

  5. The imaginary part of the η ’-nucleus potential photoproduction of η ’ meson off 12 C, 40 Ca, 93 Nb and 208 Pb E γ = 1500 - 2200 MeV; 12 · σ γ A ! η 0 X normalized to carbon T C A = A · σ γ C ! η 0 X comparison with other mesons M. Nanova et al., PLB 710 (2012) 600 T A C T A E � =1.7 GeV 1 1 0.9 0.8 � ’ 0.9 0.7 0.6 0.8 � 0.5 � ’exp data � ( � 0 )=10 MeV 0.4 0.7 � ( � 0 )=15 MeV � � ( � 0 )=20 MeV � ( � 0 )=25 MeV � ( � 0 )=30 MeV 0.3 � ( � 0 )=35 MeV 0.6 � ( � 0 )=40 MeV 2 2 A 10 10 10 10 A η ’ interaction with nuclear matter at low density approximation: much weaker than for η , ω Γ ( ρ ) = Γ ( ρ 0 ) ρ Γ ( ρ ) = − Im Π ( ρ ) ∼ ρ v σ inel ; mesons ρ 0 E ➱ Γ η ’ (< ⎮ p η ’ ⎮ > ≈ 1.05 GeV/c ) ≈ 15-25 MeV; W( ρ = ρ 0 )= - Γ 0 /2 = - (7.5-12.5) MeV ρ 0 =0.17 fm -3 ; σ η ’inel ≈ 3 -10 mb 5

  6. The real part of the η ’-nucleus potential J. Weil, U. Mosel and V. Metag, PLB 723 (2013 ) 120 E. Paryev, J. Phys. G: Nucl. Part. Phys. 40 (2013) 025201 based on γ p → η ’p and γ n → η ’n exp. data - measurement of the momentum distribution - measurement of the excitation function of of the meson: the meson: in case of dropping mass - when leaving the in case of dropping mass - nucleus hadron has to become on-shell; higher meson yield for given √ s mass generated at the expense of kinetic because of increased phase space energy due to lowering of the production threshold ➯ downward shift of momentum distribution 10 100 10 100 12 C-> η ’X 93 Nb-> η ’X γ 1 10 γ 12 C-> η ’X d σ γ Nb-> η ’X /dp η ’ [ µ b/(GeV/c)] γ d σ γ C-> η ’X /dp η ’ [ µ b/(GeV/c)] 93 Nb-> η ’X γ E γ =1.5-2.2 GeV σ γ C-> η ’X [ µ b] σ γ Nb-> η ’X [ µ b] E γ =1.5-2.2 GeV 1 10 0.1 1 Coll. Broadening Coll. Broadening ( σ η ’N =8 mb) ( σ η ’N =8 mb) Coll. Broadening Coll. Broadening Coll. Broadening + ( σ η ’N =8 mb) ( σ η ’N =8 mb) Coll. Broadening + 0.01 0.1 Mass Shift (-5%) Mass Shift (-5%) Coll. Broadening + Coll. Broadening + Mass Shift (-5%) Mass Shift (-5%) E thr E thr γ N γ N 0.1 1 1E-3 0.01 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 1.0 1.2 1.4 1.6 1.8 2.0 2.2 1.0 1.2 1.4 1.6 1.8 2.0 2.2 p η ’ [GeV/c] E γ [GeV] p η ’ [GeV/c] E γ [GeV] 6

  7. excitation function for η ’ photoproduction off C comparison of CBELSA/TAPS data with calculations by E. Paryev, J. Phys. G: Nucl. Part. Phys. 40 (2013) 025201 and priv. communication decay mode: η ’ → π 0 π 0 η exp. data and the 5 scenarios divided by the excitation function V( ρ = ρ 0 )=0 MeV calculation for scenario 10 � � ’ [ µ b] � � ’ [ µ b] C data � tot ratio � diff 5 V( � = � 0 ) = 0 MeV V( � = � 0 ) = -25 MeV 4 V( � = � 0 ) = -50 MeV 1 V( � = � 0 ) = 0 MeV V( � = � 0 ) = -75 MeV V( � = � 0 ) = -100 MeV V( � = � 0 ) = -25 MeV 3 V( � = � 0 ) = -50 MeV V( � = � 0 ) = -150 MeV V( � = � 0 ) = -75 MeV V( � = � 0 ) = -100 MeV 2 V( � = � 0 ) = -150 MeV -1 10 E � thr 1 E � thr 1000 1500 2000 2500 1500 2000 2500 E � [MeV] E � [MeV] E � [MeV] strong mass shift not supported by data calculations normalized to data for E γ = 2000-2500 MeV; downscaled by 1.2 7

  8. estimation of the real part of the η ’-nucleus potential from the η ’ excitation function M. N. et al., paper accepted for publication in PLB significance test excitation function � 2 /f 10 30 � � ’ [ µ b] � � ’ [ µ b] C data � tot � diff 25 20 1 V( � = � 0 ) = 0 MeV 15 V( � = � 0 ) = -25 MeV V( � = � 0 ) = -50 MeV V( � = � 0 ) = -75 MeV 10 V( � = � 0 ) = -100 MeV V( � = � 0 ) = -150 MeV σ η ’N =11mb -1 5 10 E � thr 0 1000 1500 2000 2500 -150 -100 -50 0 potential depth [MeV] E � [MeV] E � [MeV] χ 2 -fit of the data with the calculated excitation functions V( ρ = ρ 0 ) = -40±6 MeV for the 6 scenarios 8

  9. experimental data on η ’ photoproduction off 12 C η ’ →π 0 π 0 η → 6 γ E γ = 1250 - 2600 MeV BR: 8.1% sensitivity to different scenarios E. Ya. Paryev, priv. communication below threshold at threshold above threshold 1250-1350 MeV 1550-1600 MeV 1800-1900 MeV 4 4 V = 0 MeV 1 V = -25 MeV; 2 2 V = -50 MeV 0 V = -75 MeV 0 0 d � /d(cos � � ’ ) [ µ b] d � /d(cos � � ’ ) [ µ b] d � /d(cos � � ’ ) [ µ b] 1600-1700 MeV 1900-2000 MeV 1350-1450 MeV 5 5 V = -100 MeV; 2 V = -150 MeV 2.5 2.5 0 0 0 1450-1550 MeV 1700-1800 MeV 2100-2200 MeV 5 5 2 2.5 2.5 0 0 0 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 cos( � � ’ ) cm cos( � � ’ ) cm cos( � � ’ ) cm high sensitivity to different scenarios at threshold strong mass shift not supported by data 9

  10. η ’ momentum distribution off C comparison of CBELSA/TAPS data with calculations by E. Paryev, J. Phys. G: Nucl. Part. Phys. 40 (2013) 025201 and priv. communication exp. data and the 5 scenarios divided by the momentum distribution V( ρ = ρ 0 )=0 MeV calculation for scenario d � � ’ /dp � ’ [ µ b/GeV/c] 10 C data E � =1500-2200 MeV ratio E � =1500-2200 MeV 8 1 C data 6 V( � = � 0 ) = 0 MeV V( � = � 0 ) = -25 MeV V( � = � 0 ) = 0 MeV V( � = � 0 ) = -50 MeV V( � = � 0 ) = -75 MeV V( � = � 0 ) = -25 MeV 4 V( � = � 0 ) = -100 MeV V( � = � 0 ) = -50 MeV V( � = � 0 ) = -150 MeV V( � = � 0 ) = -75 MeV -1 V( � = � 0 ) = -100 MeV 10 2 V( � = � 0 ) = -150 MeV 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 0 0.5 1 1.5 p � ’ [GeV/c ] p � ’ [GeV/c ] calculation normalized to data in p = 1.5-1.8 GeV/c, downscaled by 1.2 V( ρ = ρ 0 ) ≈ -50 MeV ➯ attractive! data favour 10

  11. estimation of the of η ’-nucleus potential depth from the η ’ momentum distribution � 2 /f d � � ’ /dp � ’ [ µ b/GeV/c] C data E � =1500-2200 MeV 10 8 1 6 V( � = � 0 ) = 0 MeV 4 V( � = � 0 ) = -25 MeV V( � = � 0 ) = -50 MeV V( � = � 0 ) = -75 MeV -1 V( � = � 0 ) = -100 MeV 2 10 V( � = � 0 ) = -150 MeV 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 -150 -100 -50 0 potential depth [MeV] p � ’ [GeV/c ] V( ρ = ρ 0 ) = -32±11 MeV consistent with predictions by: S. Bass and A.W.Thomas, Acta Phys. Pol. B 41 (2010) 2239 H. Nagahiro et al., PLB 709 (2012) 87. W( ρ = ρ 0 ) = -10±2.5 MeV, M. Nanova et al., PLB 710 (2012) 600. ⎮ V ⎮ >> ⎮ W ⎮ ! ➯ search for η ’ mesic states promising 11

  12. excitation function for η ’ photoproduction off Nb data will be taken with CB/TAPS detector system at ELSA Nov. 2013 / Jan. 2014 E. Paryev, private communication excitation function momentum distribution 10 2 d � � ’ /dp � ’ [ µ b/GeV/c] � � ’ [ µ b] Nb E � =1500-2200 MeV Nb 10 10 V( � = � 0 ) = 0 MeV V( � = � 0 ) = -25 MeV V( � = � 0 ) = 0 MeV 1 V( � = � 0 ) = -50 MeV V( � = � 0 ) = -25 MeV V( � = � 0 ) = -75 MeV V( � = � 0 ) = -50 MeV V( � = � 0 ) = -100 MeV V( � = � 0 ) = -75 MeV V( � = � 0 ) = -150 MeV 1 V( � = � 0 ) = -100 MeV σ η ’N =11mb V( � = � 0 ) = -150 MeV -1 10 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 1 1.5 2 2.5 3 p � ’ [GeV/c ] E � [MeV] 12

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend