dedekind cotangent sums matthias beck state university of
play

Dedekind cotangent sums Matthias Beck State University of New York - PDF document

Dedekind cotangent sums Matthias Beck State University of New York Binghamton www.math.binghamton.edu/matthias Define the sawtooth function (( x )) by { x } 1 2 if x Z (( x )) := if x Z . 0 ( { x } = x [ x ] = fractional


  1. Dedekind cotangent sums Matthias Beck State University of New York Binghamton www.math.binghamton.edu/matthias

  2. Define the sawtooth function (( x )) by � { x } − 1 2 if x �∈ Z (( x )) := if x ∈ Z . 0 ( { x } = x − [ x ] = fractional part of x .) For a, b ∈ N := { n ∈ Z : n > 0 } , we define the Dedekind sum as �� �� �� �� � ka k s ( a, b ) := b b k mod b � 1 cot πka cot πk = b . 4 b b k mod b Since their introduction by Dedekind in the 1880’s, these sums and their generalizations have appeared in various areas such as ana- lytic and algebraic number theory, topology, algebraic and combinatorial geometry, and algorithmic complexity. 2

  3. The Bernoulli polynomials B k ( x ) are de- fined through ze xz � B k ( x ) z k . e z − 1 = k ! k ≥ 0 2 , B 2 ( x ) = x 2 − x + 1 ( B 1 ( x ) = x − 1 6 , etc.) The Bernoulli numbers are B k := B k (0) . The Bernoulli functions B k ( x ) are the peri- odized Bernoulli polynomials: B k ( x ) := B k ( { x } ) . Apostol (1950’s) introduced � � � k ka b B n , b k mod b generalized by Carlitz and Mikol´ as to � � � � � kb kc s m,n ( a ; b, c ) := B m B n . a a k mod b 3

  4. For a, b ∈ N , x, y ∈ R , the Dedekind- Rademacher sum (1960’s) is defined by s ( a, b ; x, y ) := �� �� �� k + y �� � a k + y − x . b b k mod b (A special version of this sum had been de- fined earlier by Meyer and Dieter.) Tak´ acs (1970’s) introduced � k + y � � � � a k + y B 1 B n − x , b b k mod b further generalized by Halbritter (1980’s) and Hall, Wilson, and Zagier (1990’s) to � a b c � := s m,n x y z � � � � � b k + x c k + x B m − y B n − z . a a k mod a 4

  5. Around 1980, Meyer and Sczech, and Di- eter independently introduced the cotangent sum, defined for a, b ∈ N , x, y ∈ R by c ( a, b, c ; x, y, z ) := � � � � � 1 a k + z b k + z cot π − x cot π − y . c c c k mod c These include as special cases various mod- ified Dedekind sums introduced by Berndt, such as b ( − 1) k +[ ak/b ] �� �� � k . b k =1 Finally, Zagier (1970’s) introduced s ( a 0 ; a 1 , . . . , a d ) := a 0 − 1 � ( − 1) d/ 2 a 0 · · · cot πka d cot πka 1 . a 0 a 0 k =1 5

  6. Definition. For a 0 , . . . , a d ∈ N , m 0 , . . . , m d ∈ N 0 := N ∪ { 0 } , z 0 , . . . , z d ∈ C , we define the Dedekind cotangent sum as   a 0 a 1 ··· a d  :=  m 0 m 1 ··· m d c z 0 z 1 ··· z d d � � � � cot ( m j ) π k + z 0 1 a j a 0 − z j . a m 0+1 0 j =1 k mod a 0 Reason for introducing cotangent derivatives: - they appear in lattice point enumeration formulas for polyhedra (Diaz-Robins) - they are essentially the discrete Fourier transforms of the Bernoulli functions: for m ≥ 2 , � � B m n B m = ( − p ) m + p � m p − 1 � cot ( m − 1) � � � e 2 πkn/p . i πk m 2 p p k =1 6

  7. Corollary. For a, b, c ∈ N pairwise relatively prime, � � � � � s m,n ( a ; b, c ) def kb kc = B m B n a a k mod a a m + n − 1 + mn ( − 1) ( m − n ) / 2 = B m B n 2 m + n a m + n − 1 · a − 1 cot ( m − 1) � � cot ( n − 1) � � � πkc πkb · a a k =1   a b c = mn ( − 1) ( m − n ) / 2 def   m + n − 2 n − 1 m − 1 c 2 m + n 0 0 0 + B m B n a m + n − 1 . Another note: a − 1 � � �� �� � k kb B m a a k =1 appears naturally in the study of plane par- tition enumeration (Almkvist, 1990’s). 7

  8. Three themes for Dedekind sums: 1. Reciprocity laws 2. Petersson-Knopp identities 3. Computability properties 8

  9. 1. “If you had done something twice, you are likely to do it again.” Brian Kernighan and Bob Pike ( The Unix Programming Environment , Pren- tice Hall, p. 97) 9

  10. � s ( a, b ) := 1 cot πka cot πk 4 b b b k mod b Theorem (Dedekind). If a, b ∈ N are rela- tively prime then � � s ( a, b ) + s ( b, a ) = − 1 4 + 1 a b + 1 ab + b 12 a = something simple . ”Proof” (Rademacher? Carlitz?): Integrate the function f ( z ) = cot( πaz ) cot( πbz ) cot( πz ) along γ = [ x + iy, x − iy, x +1 − iy, x +1+ iy, x + iy ] , for suitably chosen x and y . 10

  11. c ( a, b, c ; x, y, z ) := � � � � � 1 a k + z b k + z cot π − x cot π − y . c c c k mod c Theorem (Dieter). Let a, b, c ∈ N be pair- wise relatively prime. Then c ( a, b, c ; x, y, z ) + c ( b, c, a ; y, z, x ) + c ( c, a, b ; z, x, y ) = something simple . ”Proof”: Integrate f ( w ) = cot π ( aw − x ) cot π ( bw − y ) cot π ( cw − z ) along γ . 11

  12. s ( a 0 ; a 1 , . . . , a d ) := a 0 − 1 � ( − 1) d/ 2 a 0 · · · cot πka d cot πka 1 . a 0 a 0 k =1 Theorem (Zagier). If a 0 , . . . , a d ∈ N are pairwise relatively prime then d � s ( a n ; a 0 , . . . , � a n , . . . , a d ) n =0 = something simple . ”Proof”: Integrate f ( z ) = cot πa 0 z · · · cot πa d z . along γ . 12

  13.   a 0 a 1 ··· a d   := m 0 m 1 ··· m d c z 0 z 1 ··· z d d � � � � cot ( m j ) π k + z 0 1 a j a 0 − z j . a m 0+1 0 k mod a 0 j =1 Theorem. Let a 0 , . . . , a d ∈ N , m 0 , . . . m d ∈ N 0 , z 0 , . . . , z d ∈ C . Then d 0 ··· � n ··· a ld � � a l 0 a ln ( − 1) m n m n ! d l n ! ··· l d ! · l 0 ! ··· � n =0 l 0 ,..., � ln,...,ld ≥ 0 l 0+ ··· + � ln + ··· + ld = mn   · · · · · · a n a 0 a n a d �   � · c m n m 0 + l 0 · · · m n + l n · · · m d + l d · · · · · · z n z 0 z n z d � � ( − 1) d/ 2 if all m k = 0 and d is even = 0 otherwise, 13

  14. if for all distinct i, j ∈ { 0 , . . . , d } and all m, n ∈ Z , − n + z j m + z i �∈ Z . a i a j ”Proof”: Integrate d � � � cot ( m j ) π f ( z ) = a j z − z j j =0 along γ . 14

  15. 2. ”Mathematics is a collection of cheap tricks and dirty jokes.” Lipman Bers 15

  16. Theorem (Petersson-Knopp). If a, b ∈ N are relatively prime then � � � n � d b + ka, ad = σ ( n ) s ( b, a ) . s k mod d d | n This identity was stated by Petersson in the 1970’s (with additional congruence restric- tions on a and b ) and proved by Knopp in 1980. For n prime, the identity was already known to Dedekind. It was generalized by Parson and Rosen to Apostol’s generalized Dedekind sums, by Apos- tel and Vu to their ’sums of the Dedekind type’ (both 1980’s), and, most broadly, by Zheng (1990’s) to what we will call sums of Dedekind type with weight ( m 1 , m 2 ) . 16

  17. Definition. Let a, a 1 , . . . , a d ∈ N . � ka 1 � � ka d � � S ( a ; a 1 , . . . , a d ) := f 1 · · · f d a a k mod a is called of Dedekind type with weight ( m 1 , . . . , m d ) if for all j = 1 , . . . , d , f j ( x + 1) = f j ( x ) and for all a ∈ N , � � � x + k = a m j f j ( ax ) . f j a k mod a Note that the Bernoulli functions B m ( x ) satisfy this identity (with ’weight’ − m + 1 ), as do the functions cot ( m ) ( πx ) (with ’weight’ m + 1 ). Zheng’s theorem is the ’two-dimensional’ case of the following 17

  18. Theorem. Let n, a, a 1 , . . . , a d ∈ N . If � ka 1 � � ka d � � S ( a ; a 1 , . . . , a d ) := f 1 · · · f d a a k mod a is of Dedekind type with weight ( m 1 , . . . , m d ) then � � b − m 1 −···− m d r 1 ,...,r d mod b b | n � � ab ; n b a 1 + r 1 a , . . . , n S b a d + r d a = n σ d − 1 − m 1 −···− m d ( n ) S ( a ; a 1 , . . . , a d ) . Here σ m ( n ) := � d | n d m . Our proof is along the exact same lines as Zheng’s proof for d = 2 , a slick application of the M¨ obius µ -function. 18

  19. Corollary. For n, a 0 , . . . , a d ∈ N , m 0 , . . . , m d ∈ N 0 , � � b m 0 +1 − m 1 −···− m d − d r 1 ,...,r d mod b b | n   a 0 b n ba 1 + r 1 a 0 · · · n ba d + r d a 0   · · · m 0 m 1 m d c · · · 0 0 0   a 1 · · · a 0 a d  .  = n σ − m 1 −···− m d − 1 ( n ) c m 0 m 1 · · · m d 0 · · · 0 0 Corollary. For n, a 0 , . . . , a d ∈ N , � � b 1 − d r 1 ,...,r d mod b b | n s ( a 0 b ; n b a 1 + r 1 a 0 , . . . , n b a d + r d a 0 ) = σ ( n ) s ( a 0 ; a 1 , . . . , a d ) . 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend