computing the continuous discretely the magic quest for a
play

Computing the continuous discretely: The magic quest for a volume - PowerPoint PPT Presentation

Computing the continuous discretely: The magic quest for a volume Matthias Beck San Francisco State University math.sfsu.edu/beck Joint work with... Dennis Pixton (Birkhoff volume) Ricardo Diaz and Sinai Robins (Fourier-Dedekind sums)


  1. Computing the continuous discretely: The magic quest for a volume Matthias Beck San Francisco State University math.sfsu.edu/beck

  2. Joint work with... Dennis Pixton (Birkhoff volume) ◮ Ricardo Diaz and Sinai Robins (Fourier-Dedekind sums) ◮ Ira Gessel and Takao Komatsu (restricted partition function) ◮ Jesus De Loera, Mike Develin, Julian Pfeifle, Richard Stanley (roots of ◮ Ehrhart polynomials) Integer-point enumeration in polytopes Matthias Beck 2

  3. Birkhoff polytope     x 11 · · · x 1 n � j x jk = 1 for all 1 ≤ k ≤ n    ∈ R n 2 . . . . B n = . . ≥ 0 :  � k x jk = 1 for all 1 ≤ j ≤ n x n 1 . . . x nn   Integer-point enumeration in polytopes Matthias Beck 3

  4. Birkhoff polytope     x 11 · · · x 1 n � j x jk = 1 for all 1 ≤ k ≤ n    ∈ R n 2 . . . . B n = . . ≥ 0 :  � k x jk = 1 for all 1 ≤ j ≤ n x n 1 . . . x nn   ◮ B n is a convex polytope of dimension ( n − 1) 2 ◮ Vertices are the n × n -permutation matrices. Integer-point enumeration in polytopes Matthias Beck 3

  5. Birkhoff polytope     x 11 · · · x 1 n � j x jk = 1 for all 1 ≤ k ≤ n    ∈ R n 2 . . . . B n = . . ≥ 0 :  � k x jk = 1 for all 1 ≤ j ≤ n x n 1 . . . x nn   ◮ B n is a convex polytope of dimension ( n − 1) 2 ◮ Vertices are the n × n -permutation matrices. vol B n =? Integer-point enumeration in polytopes Matthias Beck 3

  6. Birkhoff polytope     x 11 · · · x 1 n � j x jk = 1 for all 1 ≤ k ≤ n    ∈ R n 2 . . . . B n = . . ≥ 0 :  � k x jk = 1 for all 1 ≤ j ≤ n x n 1 . . . x nn   ◮ B n is a convex polytope of dimension ( n − 1) 2 ◮ Vertices are the n × n -permutation matrices. vol B n =? � tX ∩ Z d � # One approach: for X ⊂ R d , vol X = lim t d t →∞ Integer-point enumeration in polytopes Matthias Beck 3

  7. (Weak) semimagic squares � t B n ∩ Z n 2 � H n ( t ) := #     x 11 · · · x 1 n � j x jk = t   . .  ∈ Z n 2 . . = # . . ≥ 0 :  � k x jk = t x n 1 . . . x nn   Integer-point enumeration in polytopes Matthias Beck 4

  8. (Weak) semimagic squares � t B n ∩ Z n 2 � H n ( t ) := #     x 11 · · · x 1 n � j x jk = t   . .  ∈ Z n 2 . . = # . . ≥ 0 :  � k x jk = t x n 1 . . . x nn   Theorem (Ehrhart, Stanley 1973, conjectured by Anand-Dumir-Gupta 1966) H n ( t ) is a polynomial in t of degree ( n − 1) 2 . Integer-point enumeration in polytopes Matthias Beck 4

  9. (Weak) semimagic squares � t B n ∩ Z n 2 � H n ( t ) := #     x 11 · · · x 1 n � j x jk = t   . .  ∈ Z n 2 . . = # . . ≥ 0 :  � k x jk = t x n 1 . . . x nn   Theorem (Ehrhart, Stanley 1973, conjectured by Anand-Dumir-Gupta 1966) H n ( t ) is a polynomial in t of degree ( n − 1) 2 . For example... ◮ H 1 ( t ) = 1 ◮ H 2 ( t ) = t + 1 8 t 4 + 3 4 t 3 + 15 8 t 2 + 9 � t +3 � t +2 = 1 � � ◮ (MacMahon 1905) H 3 ( t ) = 3 + 4 t + 1 4 2 Integer-point enumeration in polytopes Matthias Beck 4

  10. Ehrhart quasi-polynomials Rational (convex) polytope P – convex hull of finitely many points in Q d x ∈ R d : A x ≤ b � � � x ∈ R d � Alternative description: P = ≥ 0 : A x = b ⇄ Integer-point enumeration in polytopes Matthias Beck 5

  11. Ehrhart quasi-polynomials Rational (convex) polytope P – convex hull of finitely many points in Q d x ∈ R d : A x ≤ b � � � x ∈ R d � Alternative description: P = ≥ 0 : A x = b ⇄ � t P ∩ Z d � For t ∈ Z > 0 , let L P ( t ) := # Integer-point enumeration in polytopes Matthias Beck 5

  12. Ehrhart quasi-polynomials Rational (convex) polytope P – convex hull of finitely many points in Q d x ∈ R d : A x ≤ b � � � x ∈ R d � Alternative description: P = ≥ 0 : A x = b ⇄ � t P ∩ Z d � For t ∈ Z > 0 , let L P ( t ) := # Quasi-polynomial – c d ( t ) t d + c d − 1 ( t ) t d − 1 + · · · + c 0 ( t ) where c k ( t ) are periodic Theorem (Ehrhart 1967) If P is a rational polytope, then... ◮ L P ( t ) and L P ◦ ( t ) are quasi-polynomials in t of degree dim P ◮ If P has integer vertices, then L P and L P ◦ are polynomials ◮ Leading term: vol( P ) (suitably normalized) ◮ L P (0) = χ ( P ) ◮ (Macdonald 1970) L P ( − t ) = ( − 1) dim P L P ◦ ( t ) Integer-point enumeration in polytopes Matthias Beck 5

  13. (Weak) semimagic squares revisited H n ( t ) = L B n ( t )     x 11 · · · x 1 n � j x jk = t   . .  ∈ Z n 2 . . = # . . ≥ 0 :  � k x jk = t x n 1 . . . x nn       x 11 · · · x 1 n � j x jk = t   . .  ∈ Z n 2 . . L B ◦ n ( t ) = # . . > 0 :  � k x jk = t x n 1 . . . x nn   Integer-point enumeration in polytopes Matthias Beck 6

  14. (Weak) semimagic squares revisited H n ( t ) = L B n ( t )     x 11 · · · x 1 n � j x jk = t   . .  ∈ Z n 2 . . . . = # ≥ 0 :  � k x jk = t x n 1 . . . x nn       x 11 · · · x 1 n � j x jk = t   . .  ∈ Z n 2 . . L B ◦ n ( t ) = # . . > 0 :  � k x jk = t x n 1 . . . x nn   L B ◦ n ( t ) = L B n ( t − n ) , so by Ehrhart-Macdonald reciprocity (Ehrhart, Stanley 1973) H n ( − n − t ) = ( − 1) ( n − 1) 2 H n ( t ) H n ( − 1) = · · · = H n ( − n + 1) = 0 . Integer-point enumeration in polytopes Matthias Beck 6

  15. Computation of Ehrhart (quasi-)polynomials Pommersheim (1993): 3-dimensional tetrahedra – connection to ◮ Dedekind sum b − 1 cot πka cot πk � b b k =1 Integer-point enumeration in polytopes Matthias Beck 7

  16. Computation of Ehrhart (quasi-)polynomials Pommersheim (1993): 3-dimensional tetrahedra – connection to ◮ Dedekind sum b − 1 cot πka cot πk � b b k =1 t ≥ 0 L P ( t ) x t is polynomial-time Barvinok (1993): In fixed dimension, � ◮ computable Integer-point enumeration in polytopes Matthias Beck 7

  17. Computation of Ehrhart (quasi-)polynomials Pommersheim (1993): 3-dimensional tetrahedra – connection to ◮ Dedekind sum b − 1 cot πka cot πk � b b k =1 t ≥ 0 L P ( t ) x t is polynomial-time Barvinok (1993): In fixed dimension, � ◮ computable Formulas by Danilov, Brion-Vergne, Kantor-Khovanskii-Puklikov, Diaz- ◮ Robins, Chen, Baldoni-DeLoera-Szenes-Vergne, Lasserre-Zeron, . . . Integer-point enumeration in polytopes Matthias Beck 7

  18. Euler’s generating function   | | | � x ∈ R d � P := ≥ 0 : A x = b A = · · · c 1 c 2 c d   | | | Integer-point enumeration in polytopes Matthias Beck 8

  19. Euler’s generating function   | | | � x ∈ R d � P := ≥ 0 : A x = b A = · · · c 1 c 2 c d   | | | L P ( t ) equals the coefficient of z t b := z tb 1 · · · z tb m of the function 1 m 1 (1 − z c 1 ) · · · (1 − z c d ) expanded as a power series centered at z = 0 . Integer-point enumeration in polytopes Matthias Beck 8

  20. Euler’s generating function   | | | � x ∈ R d � P := ≥ 0 : A x = b A = · · · c 1 c 2 c d   | | | L P ( t ) equals the coefficient of z t b := z tb 1 · · · z tb m of the function 1 m 1 (1 − z c 1 ) · · · (1 − z c d ) expanded as a power series centered at z = 0 . Proof Expand each factor into a geometric series. Integer-point enumeration in polytopes Matthias Beck 8

  21. Euler’s generating function   | | | � x ∈ R d � P := ≥ 0 : A x = b A = · · · c 1 c 2 c d   | | | L P ( t ) equals the coefficient of z t b := z tb 1 · · · z tb m of the function 1 m 1 (1 − z c 1 ) · · · (1 − z c d ) expanded as a power series centered at z = 0 . Proof Expand each factor into a geometric series. Equivalently, 1 L P ( t ) = const (1 − z c 1 ) · · · (1 − z c d ) z t b Integer-point enumeration in polytopes Matthias Beck 8

  22. Partition functions and the Frobenius problem Restricted partition function for A = { a 1 , . . . , a d } ( m 1 , . . . , m d ) ∈ Z d � � p A ( t ) = # ≥ 0 : m 1 a 1 + · · · + m d a d = t Integer-point enumeration in polytopes Matthias Beck 9

  23. Partition functions and the Frobenius problem Restricted partition function for A = { a 1 , . . . , a d } ( m 1 , . . . , m d ) ∈ Z d � � p A ( t ) = # ≥ 0 : m 1 a 1 + · · · + m d a d = t Frobenius problem: find the largest value for t such that p A ( t ) = 0 Integer-point enumeration in polytopes Matthias Beck 9

  24. Partition functions and the Frobenius problem Restricted partition function for A = { a 1 , . . . , a d } ( m 1 , . . . , m d ) ∈ Z d � � p A ( t ) = # ≥ 0 : m 1 a 1 + · · · + m d a d = t Frobenius problem: find the largest value for t such that p A ( t ) = 0 p A ( t ) = L P ( t ) where ( x 1 , . . . , x d ) ∈ R d � � P = ≥ 0 : x 1 a 1 + · · · + x d a d = 1 Integer-point enumeration in polytopes Matthias Beck 9

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend