vector partition functions
play

Vector-partition functions Matthias Beck San Francisco State - PowerPoint PPT Presentation

Vector-partition functions Matthias Beck San Francisco State University math.sfsu.edu/beck Vector partition functions A an ( m d ) -integral matrix b Z m x Z d Goal: Compute vector partition function A ( b ) := #


  1. Vector-partition functions Matthias Beck San Francisco State University math.sfsu.edu/beck

  2. Vector partition functions A – an ( m × d ) -integral matrix b ∈ Z m � x ∈ Z d � Goal: Compute vector partition function φ A ( b ) := # ≥ 0 : A x = b (defined for b in the nonnegative linear span of the columns of A ) Vector-partition functions Matthias Beck 2

  3. Vector partition functions A – an ( m × d ) -integral matrix b ∈ Z m � x ∈ Z d � Goal: Compute vector partition function φ A ( b ) := # ≥ 0 : A x = b (defined for b in the nonnegative linear span of the columns of A ) Applications in... ◮ Number Theory (partitions) ◮ Discrete Geometry (polyhedra) ◮ Commutative Algebra (Hilbert series) ◮ Algebraic Geometry (toric varieties) ◮ Representation Theory (tensor product multiplicities) ◮ Optimization (integer programming) ◮ Chemistry, Biology, Physics, Computer Science, Economics... Vector-partition functions Matthias Beck 2

  4. An example � � 1 2 1 0 A = 1 1 0 1 Vector-partition functions Matthias Beck 3

  5. An example � � 1 2 1 0 A = 1 1 0 1 � � a �� x ∈ Z 4 φ A ( a, b ) = # ≥ 0 : A x = b  4 + a + 7+( − 1) a a 2 if a ≤ b  8   2 + 7+( − 1) a ab − a 2 4 − b 2 2 + a + b if a = 2 − 1 ≤ b ≤ a + 1 8 b 2  2 + 3 b if b ≤ a 2 + 1   2 Vector-partition functions Matthias Beck 3

  6. An example a � 2 − 1 ≤ b ≤ a + 1 b ✻ � � � � 1 2 1 0 � a ≤ b � � A = ✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟ � ✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟✟ � 1 1 0 1 � � � � � � � � � � � b ≤ a � � � 2 � � � � ✲ � � a � � � � � � � � a �� x ∈ Z 4 φ A ( a, b ) = # ≥ 0 : A x = b  4 + a + 7+( − 1) a a 2 if a ≤ b  8   2 + 7+( − 1) a ab − a 2 4 − b 2 2 + a + b if a = 2 − 1 ≤ b ≤ a + 1 8 b 2  2 + 3 b if b ≤ a 2 + 1   2 Vector-partition functions Matthias Beck 3

  7. A “one-dimensional” example A = ( a 1 , a 2 , . . . , a d ) Vector-partition functions Matthias Beck 4

  8. A “one-dimensional” example A = ( a 1 , a 2 , . . . , a d ) Restricted partition function ( m 1 , . . . , m d ) ∈ Z d � � φ A ( t ) = # ≥ 0 : m 1 a 1 + · · · + m d a d = t , a quasi-polynomial, i.e., φ A ( t ) = c d − 1 ( t ) t d − 1 + c d − 2 ( t ) t d − 2 + · · · + c 0 ( t ) where c k ( t ) are periodic Vector-partition functions Matthias Beck 4

  9. A “one-dimensional” example A = ( a 1 , a 2 , . . . , a d ) Restricted partition function ( m 1 , . . . , m d ) ∈ Z d � � φ A ( t ) = # ≥ 0 : m 1 a 1 + · · · + m d a d = t , a quasi-polynomial, i.e., φ A ( t ) = c d − 1 ( t ) t d − 1 + c d − 2 ( t ) t d − 2 + · · · + c 0 ( t ) where c k ( t ) are periodic Frobenius problem: find the largest value for t such that φ A ( t ) = 0 Vector-partition functions Matthias Beck 4

  10. Ehrhart quasi-polynomials Rational (convex) polytope P – convex hull of finitely many points in Q d x ∈ R d : A x ≤ b � � Alternative description: P = � t P ∩ Z d � For t ∈ Z > 0 , let L P ( t ) := # Vector-partition functions Matthias Beck 5

  11. Ehrhart quasi-polynomials Rational (convex) polytope P – convex hull of finitely many points in Q d x ∈ R d : A x ≤ b � � Alternative description: P = � � x ∈ R d Translate & introduce slack variables − → P = ≥ 0 : A x = b � t P ∩ Z d � For t ∈ Z > 0 , let L P ( t ) := # Vector-partition functions Matthias Beck 5

  12. Ehrhart quasi-polynomials Rational (convex) polytope P – convex hull of finitely many points in Q d x ∈ R d : A x ≤ b � � Alternative description: P = � � x ∈ R d Translate & introduce slack variables − → P = ≥ 0 : A x = b � t P ∩ Z d � For t ∈ Z > 0 , let L P ( t ) := # = φ A ( t b ) (for fixed b ) Vector-partition functions Matthias Beck 5

  13. Ehrhart quasi-polynomials Rational (convex) polytope P – convex hull of finitely many points in Q d x ∈ R d : A x ≤ b � � Alternative description: P = � � x ∈ R d Translate & introduce slack variables − → P = ≥ 0 : A x = b � t P ∩ Z d � For t ∈ Z > 0 , let L P ( t ) := # = φ A ( t b ) (for fixed b ) Theorem (Ehrhart 1967) If P is a rational polytope, then the functions L P ( t ) and L P ◦ ( t ) are quasi-polynomials in t of degree dim P . If P has integer vertices, then L P and L P ◦ are polynomials. Furthermore, L P (0) = 1 Theorem (Ehrhart, Macdonald 1970) L P ( − t ) = ( − 1) dim P L P ◦ ( t ) Vector-partition functions Matthias Beck 5

  14. Corollaries due to Ehrhart theory The computation of the (Ehrhart-)quasi-polynomial ( m 1 , . . . , m d ) ∈ Z d � � φ A ( t ) = # ≥ 0 : m 1 a 1 + · · · + m d a d = t , gives rise to the Fourier-Dedekind sum (M B–Robins 2003) λ n σ n ( a 1 , . . . , a d ; a 0 ) := 1 � (1 − λ a 1 ) · · · (1 − λ a d ) . a 0 λ a 0 =1 Vector-partition functions Matthias Beck 6

  15. Corollaries due to Ehrhart theory The computation of the (Ehrhart-)quasi-polynomial ( m 1 , . . . , m d ) ∈ Z d � � φ A ( t ) = # ≥ 0 : m 1 a 1 + · · · + m d a d = t , gives rise to the Fourier-Dedekind sum (M B–Robins 2003) λ n σ n ( a 1 , . . . , a d ; a 0 ) := 1 � (1 − λ a 1 ) · · · (1 − λ a d ) . a 0 λ a 0 =1 Choosing d = 2 , n = 0 , a 1 = a, a 2 = 1 , a 0 = b gives rise to the classical Dedekind sum b − 1 s ( a, b ) := 1 � πja � � πj � � cot cot 4 b b b j =1 Vector-partition functions Matthias Beck 6

  16. Corollaries due to Ehrhart theory Ehrhart-Macdonald Reciprocity yields the functional identity φ A ( − t ) = ( − 1) d − 1 φ A ( t − ( a 1 + · · · + a d )) Vector-partition functions Matthias Beck 7

  17. Corollaries due to Ehrhart theory Ehrhart-Macdonald Reciprocity yields the functional identity φ A ( − t ) = ( − 1) d − 1 φ A ( t − ( a 1 + · · · + a d )) The identity φ A (0) = 1 implies the Reciprocity Law for Zagier’s “higher- dimensional Dedekind sums” a 0 − 1 � πja 1 � � πja d � s ( a 1 , a 2 , . . . , a d ; a 0 ) := 1 � cot · · · cot . a 0 a 0 a 0 j =1 Vector-partition functions Matthias Beck 7

  18. Corollaries due to Ehrhart theory Ehrhart-Macdonald Reciprocity yields the functional identity φ A ( − t ) = ( − 1) d − 1 φ A ( t − ( a 1 + · · · + a d )) The identity φ A (0) = 1 implies the Reciprocity Law for Zagier’s “higher- dimensional Dedekind sums” a 0 − 1 � πja 1 � � πja d � s ( a 1 , a 2 , . . . , a d ; a 0 ) := 1 � cot · · · cot . a 0 a 0 a 0 j =1 The identity φ A ( t ) = 0 for − ( a 1 + · · · + a d ) < t < 0 gives a new reciprocity relation which is a “higher-dimensional” analog of that for the the Dedekind-Rademacher sum. Vector-partition functions Matthias Beck 7

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend