annulus sle partition functions and martingale observables
play

Annulus SLE partition functions and martingale-observables Joint - PowerPoint PPT Presentation

Annulus SLE partition functions and martingale-observables Joint work with Nam-Gyu Kang, Hee-Joon Tak Sung-Soo Byun Seoul National University Random Conformal Geometry and Related Fields June 18, 2018 Outline 1 Annulus SLE partition functions


  1. Annulus SLE partition functions and martingale-observables Joint work with Nam-Gyu Kang, Hee-Joon Tak Sung-Soo Byun Seoul National University Random Conformal Geometry and Related Fields June 18, 2018

  2. Outline 1 Annulus SLE partition functions Annulus SLE ( κ, Λ) Null-vector equation CFT of GFF in a doubly connected domain 2 GFF with Dirichlet and Excursion-Reflected boundary conditions Eguchi-Ooguri and Ward’s equations Coulomb gas formalism Connection to SLE theory 3 One-leg operator and Insertion Martingale-observables for annulus SLE Screening Work in progress: Multiple SLEs in the annulus 4

  3. Chordal type annulus SLE( κ, Λ ) r ˜ g t r − t ξ t = ˜ g t ( γ ( t )) Loewner Flow: ∂ t ˜ g t ( z ) = H ( r − t , ˜ g t ( z ) − ξ t ) , H ( r , z ) := 2 ∂ z log Θ( r , z ) d ξ t = √ κ dB t + Λ( r − t , ξ t − ˜ Driving process: For κ > 0, g t ( q )) dt . Annulus SLE partition function Z ( r , x ) : Λ( r , x ) = κ∂ x log Z ( r , x ) Null-vector equation (Zhan): � 3 � ∂ r Z = κ κ − 1 2 Z ′′ + H Z ′ + H ′ Z 2

  4. The null-vector equation Null-vector equation (Zhan): � 3 � ∂ r Z = κ κ − 1 2 Z ′′ + H Z ′ + H ′ Z 2 Lawler used Brownian loop measures to define annulus SLE( κ, Λ ) and proved that the SLE partition function (total mass) satisfies the null-vector equation. (B.-Kang-Tak) For each κ > 0, � 2 Θ( r , x − ζ ) − 4 κ Θ( r , ζ ) − 4 κ d ζ Z ( r , x ) := Θ( r , x ) κ γ solves the null-vector equation. Examples κ Z ( r , · ) Θ − 1 / 2 4 Θ − 1 H 2 3 H 2 − 2 H ′ + 4 ζ r ( π ) Θ − 3 / 2 � � 4 / 3 π 4 H 3 − 6 HH ′ + H ′′ + 12 ζ r ( π ) Θ − 2 � � 1 H π

  5. Outline 1 Annulus SLE partition functions Annulus SLE ( κ, Λ) Null-vector equation CFT of GFF in a doubly connected domain 2 GFF with Dirichlet and Excursion-Reflected boundary conditions Eguchi-Ooguri and Ward’s equations Coulomb gas formalism Connection to SLE theory 3 One-leg operator and Insertion Martingale-observables for annulus SLE Screening Work in progress: Multiple SLEs in the annulus 4

  6. Green’s functions in a doubly connected domain Dirichlet BM and ERBM Figure: ERBM (Drenning, Lawler) Figure: BM • In the cylinder C r := { z : 0 < Im z < r } / � z �→ z + 2 π � , the Green’s function G r is represented as � �  � � Θ( r , ζ − z ) � − Im ζ · Im z  � �  log for Dirichlet b.c.  �  Θ( r , ζ − z ) r  G r ( ζ, z ) = � �   � �  Θ( r , ζ − z )  � �  log for ER b.c. � � Θ( r , ζ − z )

  7. GFF in a doubly connected domain Dirichlet and ER boundary conditions Φ ( 0 ) : GFF − π + ir π + ir e − r 1 D r − π π w E [Φ( ζ )Φ( z )] = 2 G D r ( ζ, z ) = 2 G r ( w ( ζ ) , w ( z )) � �  � � Θ( r , ζ − z ) � − Im ζ · Im z  � �  log for Dirichlet b.c.  �  Θ( r , ζ − z ) r  G r ( ζ, z ) = � �   � �  Θ( r , ζ − z )  � �  log for ER b.c. � � Θ( r , ζ − z )

  8. Central charge modification of GFF Φ ( 0 ) : GFF − π + ir π + ir e − r 1 D r π − π w � � κ/ 8 − 2 /κ ) and define Fix a real parameter b (= Φ ( b ) ( z ) := Φ ( 0 ) ( z ) − 2 b arg w ′ ( z ) . c = 1 − 12 b 2 = ( 6 − κ )( 3 κ − 8 ) / 2 κ The central charge is given as The Fock space fields are obtained from the GFF by applying basic operations: 1. derivatives; 2. Wick’s product ⊙ ; 3. multiplying by scalar functions and taking linear combinations.

  9. OPE family of GFF � � Fix a real parameter b (= κ/ 8 − 2 /κ ) and define Φ ( b ) ( z ) := Φ ( 0 ) ( z ) − 2 b arg w ′ ( z ) . c = 1 − 12 b 2 = ( 6 − κ )( 3 κ − 8 ) / 2 κ The central charge is given as The Fock space fields are obtained from the GFF by applying basic operations: 1. derivatives; 2. Wick’s product ⊙ ; 3. multiplying by scalar functions and taking linear combinations. Operator product expansion (OPE) of two (holomorphic) fields X ( ζ ) and Y ( z ) are given as � C n ( z )( ζ − z ) n , X ( ζ ) Y ( z ) = ζ → z . In particular, the OPE multiplication X ∗ Y := C 0 . OPE family F ( b ) of the Φ ( b ) : the algebra (over C ) spanned by the generators 1 , mixed derivatives of Φ ( b ) , those of OPE exponentials e ∗ α Φ ( b ) ( α ∈ C )

  10. Ward’s equation in doubly connected domain Stress energy tensor A ( b ) : � � A ( b ) := − 1 2 J ( 0 ) ⊙ J ( 0 ) + ib ∂ − E [ J ( b ) ] J ( 0 ) , J ( b ) = ∂ Φ ( b ) . Theorem (B.-Kang-Tak) For any string X of fields in the OPE family F ( b ) , we have � � � � L + v ζ + L − 2 E A ( b ) ( ζ ) X = E [ X ] + ∂ r E [ X ] , v ¯ ζ where all fields are evaluated in the identity chart of C r and the Loewner vector field v ζ is given by C r )( z ) = H ( r , ζ − z ) = 2 Θ ′ ( r , ζ − z ) ( v ζ � id ¯ Θ( r , ζ − z ) . Cf. On a complex torus of genus one, similar form of Ward’s equation holds. Eguchi-Ooguri: Conformal and current algebras on a general Riemann surface , Nuclear Phys. B, 282(2):308-328, 1987. Kang-Makarov: Calculus of conformal fields on a compact Riemann surface, arXiv:1708.07361, 86 pp.

  11. Eguchi-Ooguri’s type equation in a doubly connected domain Lemma For any string X of fields in the OPE family F ( b ) , in C r , � 1 E [ A ( ζ ) X ] d ζ = ∂ r E [ X ] . π [ − π + ir ,π + ir ] Ingredients of proof 1 Heat equation of Jacobi theta function: ∂ r Θ( r , z ) = Θ( r , z ) ′′ . 2 Frobenius-Stickelberger’s pseudo-addition theorem for Weierstrass ζ -function: � � 2 + ζ ′ ( z 1 )+ ζ ′ ( z 2 )+ ζ ′ ( z 3 ) = 0 , ζ ( z 1 )+ ζ ( z 2 )+ ζ ( z 3 ) ( z 1 + z 2 + z 3 = 0 ) .

  12. Neutrality condition and multi-vertex field Given divisors σ = � n j = 1 σ j · z j , σ ∗ = � n j = 1 σ j ∗ · z j , we set n � σ j Φ + ( b ) ( z j ) − σ ∗ j Φ − Φ ( b ) [ σ , σ ∗ ] := ( b ) ( z j ) , j = 1 where Φ ( b ) = Φ + ( b ) + Φ − ( b ) , Φ − ( b ) = Φ + ( b ) . Then Φ ( b ) [ σ , σ ∗ ] is a well-defined Fock space field if and only if the following neutrality condition (NC 0 ) holds: � n ( σ j + σ ∗ j ) = 0 j = 1 We define the multi-vertex field O [ σ , σ ∗ ] ≡ O ( b ) [ σ , σ ∗ ] by O ( b ) [ σ , σ ∗ ] = C ( b ) [ σ , σ ∗ ] e ⊙ i Φ ( 0 ) [ σ , σ ∗ ] where C ( b ) [ σ , σ ∗ ] is Coulomb gas correlation function .

  13. Outline 1 Annulus SLE partition functions Annulus SLE ( κ, Λ) Null-vector equation CFT of GFF in a doubly connected domain 2 GFF with Dirichlet and Excursion-Reflected boundary conditions Eguchi-Ooguri and Ward’s equations Coulomb gas formalism Connection to SLE theory 3 One-leg operator and Insertion Martingale-observables for annulus SLE Screening Work in progress: Multiple SLEs in the annulus 4

  14. One-leg operator We choose real parameters a and b in terms of SLE parameter κ as � � � a = 2 /κ, b = κ/ 8 − 2 /κ. Given a divisor β = � N j = 1 β j · q j define the one-leg operator Ψ ≡ Ψ β by Ψ β ( p , q ) := O [ a · p + β , 0 ] . Now we consider SLE ( κ, Λ) , where Λ is given by � � Λ( r , p , q ) := κ ∂ ξ ξ = p log E [Ψ( ξ, q )] d ξ t = √ κ dB t + Λ( r − t , ξ t − ˜ g t ( q 1 ) , · · · , ξ t − ˜ g t ( q N )) dt . i.e., r ˜ g t r − t

  15. Insertion Using Ψ as an insertion field, set � � ( 0 ) ( p )+ i � β j Φ + E [ X ] := E [Ψ( p , q ) X ] ⊙ ia Φ + ( 0 ) ( q j ) X � E [Ψ( p , q )] = E . e Example. Suppose that q j ’s are on the outer boundary component. In the cylinder C r , E [Φ ( b ) ]( z ) = 0

  16. Insertion Using Ψ as an insertion field, set � � ( 0 ) ( p )+ i � β j Φ + E [ X ] := E [Ψ( p , q ) X ] ⊙ ia Φ + ( 0 ) ( q j ) X � E [Ψ( p , q )] = E . e Example. Suppose that q j ’s are on the outer boundary component. In the cylinder C r , � E [Φ ( b ) ]( z ) = 2 a arg Θ( r , p − z ) � + 2 β j arg Θ( r , q j − z ) . � E [Φ ( b ) ] has piecewise Dirichlet boundary condition with jump 2 a π at p , 2 πβ j at q j and by NC 0 all jumps add up to 0. Izyurov-Kyt¨ ol¨ a: Hadamard’s formula and couplings of SLEs with free field . Probab. Theory Related Fields, 155(1-2):35-69, 2013.

  17. Martingale-observables for annulus SLE By definition, a non-random field M is a martingale-observable for annulus SLE ( κ, Λ) if for any z 1 , · · · , z n , the process � � w − 1 M t ( z 1 , · · · , z n ) := M � ˜ ( z 1 , · · · , z n ) , w t = ˜ ˜ g t − ξ t t is a local martingale on the SLE probability space. Theorem (B-Kang-Tak) For any string X of fields in the OPE family F ( b ) of Φ ( b ) , the non-random fields M = � E X are martingale-observables for SLE ( κ, Λ) . Idea of proof Ward’s equation + level 2 degeneracy equation for Ψ ⇒ BPZ-Cardy equation ⇔ M t is driftless.

  18. Screening Goal To find explicit solutions of Zhan’s PDE for Z ✄ � Idea : Z ⇐ ⇒ E Ψ ✂ ✁ Consider an chordal type annulus SLE ( κ, Λ) in cylinder from p to q . p q

  19. Screening Goal To find explicit solutions of Zhan’s PDE for Z ✄ � Idea : Z ⇐ ⇒ E Ψ ✂ ✁ Ψ( p , q ) = O [? · p +? · q ] The conformal dim λ z at z with charge σ is given as λ z = σ 2 / 2 − σ b . Candidate 1 Candidate 2 To satisfy level-2 degeneracy eq., 2 b − a λ p = a 2 / 2 − ab . p a

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend