dedekind sums a geometric viewpoint
play

Dedekind Sums: A Geometric Viewpoint Matthias Beck San Francisco - PowerPoint PPT Presentation

Dedekind Sums: A Geometric Viewpoint Matthias Beck San Francisco State University math.sfsu.edu/beck Ubi materia, ibi geometria. Johannes Kepler (1571-1630) Ubi number theory, ibi geometria. Variation on Johannes Kepler


  1. Dedekind Sums: A Geometric Viewpoint Matthias Beck San Francisco State University math.sfsu.edu/beck

  2. “Ubi materia, ibi geometria.” Johannes Kepler (1571-1630)

  3. “Ubi number theory, ibi geometria.” Variation on Johannes Kepler (1571-1630)

  4. Ehrhart Theory Integral (convex) polytope P – convex hull of finitely many points in Z d P ∩ 1 t P ∩ Z d � t Z d � � � For t ∈ Z > 0 , let L P ( t ) := # = # Dedekind Sums: A Geometric Viewpoint Matthias Beck 3

  5. Ehrhart Theory Integral (convex) polytope P – convex hull of finitely many points in Z d P ∩ 1 t P ∩ Z d � t Z d � � � For t ∈ Z > 0 , let L P ( t ) := # = # Theorem (Ehrhart 1962) If P is an integral polytope, then... ◮ L P ( t ) and L P ◦ ( t ) are polynomials in t of degree dim P ◮ Leading term: vol( P ) (suitably normalized) ◮ (Macdonald 1970) L P ( − t ) = ( − 1) dim P L P ◦ ( t ) Dedekind Sums: A Geometric Viewpoint Matthias Beck 3

  6. Ehrhart Theory Integral (convex) polytope P – convex hull of finitely many points in Z d P ∩ 1 t P ∩ Z d � t Z d � � � For t ∈ Z > 0 , let L P ( t ) := # = # Theorem (Ehrhart 1962) If P is an integral polytope, then... ◮ L P ( t ) and L P ◦ ( t ) are polynomials in t of degree dim P ◮ Leading term: vol( P ) (suitably normalized) ◮ (Macdonald 1970) L P ( − t ) = ( − 1) dim P L P ◦ ( t ) Alternative description of a polytope: x ∈ R d : A x ≤ b x ∈ R d � � � � P = ≥ 0 : A x = b ⇄ Dedekind Sums: A Geometric Viewpoint Matthias Beck 3

  7. Ehrhart Theory Rational (convex) polytope P – convex hull of finitely many points in Q d P ∩ 1 t P ∩ Z d � t Z d � � � For t ∈ Z > 0 , let L P ( t ) := # = # Theorem (Ehrhart 1962) If P is an rational polytope, then... ◮ L P ( t ) and L P ◦ ( t ) are quasi-polynomials in t of degree dim P ◮ Leading term: vol( P ) (suitably normalized) ◮ (Macdonald 1970) L P ( − t ) = ( − 1) dim P L P ◦ ( t ) Alternative description of a polytope: x ∈ R d : A x ≤ b x ∈ R d � � � � P = ≥ 0 : A x = b ⇄ Quasi-polynomial – c d ( t ) t d + c d − 1 ( t ) t d − 1 + · · · + c 0 ( t ) where c k ( t ) are periodic Dedekind Sums: A Geometric Viewpoint Matthias Beck 3

  8. An Example in Dimension 2 ( x, y ) ∈ R 2 � � ∆ := ≥ 0 : ax + by ≤ 1 ( a = 7 , b = 4 , t = 23) Dedekind Sums: A Geometric Viewpoint Matthias Beck 4

  9. An Example in Dimension 2 ( x, y ) ∈ R 2 � � ∆ := ≥ 0 : ax + by ≤ 1 ( a = 7 , b = 4 , t = 23) ( m, n ) ∈ Z 2 � � L ∆ ( t ) = # ≥ 0 : am + bn ≤ t Dedekind Sums: A Geometric Viewpoint Matthias Beck 4

  10. An Example in Dimension 2 ( x, y ) ∈ R 2 � � ∆ := ≥ 0 : ax + by ≤ 1 ( a = 7 , b = 4 , t = 23) ( m, n ) ∈ Z 2 � � L ∆ ( t ) = # ≥ 0 : am + bn ≤ t ( m, n, s ) ∈ Z 3 � � = # ≥ 0 : am + bn + s = t Dedekind Sums: A Geometric Viewpoint Matthias Beck 4

  11. An Example in Dimension 2 ( x, y ) ∈ R 2 � � ∆ := ≥ 0 : ax + by ≤ 1 ( a = 7 , b = 4 , t = 23) ( m, n ) ∈ Z 2 � � L ∆ ( t ) = # ≥ 0 : am + bn ≤ t ( m, n, s ) ∈ Z 3 � � = # ≥ 0 : am + bn + s = t 1 = const (1 − x a ) (1 − x b ) (1 − x ) x t Dedekind Sums: A Geometric Viewpoint Matthias Beck 4

  12. An Example in Dimension 2 ( x, y ) ∈ R 2 � � ∆ := ≥ 0 : ax + by ≤ 1 ( a = 7 , b = 4 , t = 23) ( m, n ) ∈ Z 2 � � L ∆ ( t ) = # ≥ 0 : am + bn ≤ t ( m, n, s ) ∈ Z 3 � � = # ≥ 0 : am + bn + s = t 1 = const (1 − x a ) (1 − x b ) (1 − x ) x t 1 dx � = (1 − x a ) (1 − x b ) (1 − x ) x t +1 2 πi | x | = ǫ Dedekind Sums: A Geometric Viewpoint Matthias Beck 4

  13. An Example in Dimension 2 ( x, y ) ∈ R 2 � � ∆ := ≥ 0 : ax + by ≤ 1 1 f ( x ) := (1 − x a ) (1 − x b ) (1 − x ) x t +1 1 � L ∆ ( t ) = f dx 2 πi | x | = ǫ Dedekind Sums: A Geometric Viewpoint Matthias Beck 5

  14. An Example in Dimension 2 ( x, y ) ∈ R 2 � � ∆ := ≥ 0 : ax + by ≤ 1 gcd ( a, b ) = 1 1 ξ a := e 2 πi/a f ( x ) := (1 − x a ) (1 − x b ) (1 − x ) x t +1 1 � L ∆ ( t ) = f dx 2 πi | x | = ǫ a − 1 b − 1 � � = Res x =1 ( f ) + Res x = ξ k a ( f ) + Res x = ξ j b ( f ) k =1 j =1 Dedekind Sums: A Geometric Viewpoint Matthias Beck 5

  15. An Example in Dimension 2 ( x, y ) ∈ R 2 � � ∆ := ≥ 0 : ax + by ≤ 1 gcd ( a, b ) = 1 1 ξ a := e 2 πi/a f ( x ) := (1 − x a ) (1 − x b ) (1 − x ) x t +1 1 � L ∆ ( t ) = f dx 2 πi | x | = ǫ a − 1 b − 1 � � = Res x =1 ( f ) + Res x = ξ k a ( f ) + Res x = ξ j b ( f ) k =1 j =1 � 1 t 2 � � 3 � 2 ab + t ab + 1 a + 1 + 1 a + 3 b + 3 + a b + b a + 1 = 2 b 12 ab a − 1 b − 1 +1 1 + 1 1 � � (1 − ξ kb a ) (1 − ξ k a ) ξ kt � � � � a b 1 − ξ ja 1 − ξ j ξ jt a j =1 k =1 b b b Dedekind Sums: A Geometric Viewpoint Matthias Beck 5

  16. An Example in Dimension 2 (Pick’s or) Ehrhart’s Theorem implies that � 1 t 2 2 ab + t ab + 1 a + 1 � + 1 � 3 a + 3 b + 3 + a b + b a + 1 � L ∆ ( t ) = 2 b 12 ab a − 1 b − 1 +1 1 + 1 1 � � (1 − ξ kb a ) (1 − ξ k a ) ξ kt � � � � a b 1 − ξ ja 1 − ξ j ξ jt a k =1 j =1 b b b has constant term L ∆ (0) = 1 Dedekind Sums: A Geometric Viewpoint Matthias Beck 6

  17. An Example in Dimension 2 (Pick’s or) Ehrhart’s Theorem implies that � 1 t 2 2 ab + t ab + 1 a + 1 � + 1 � 3 a + 3 b + 3 + a b + b a + 1 � L ∆ ( t ) = 2 b 12 ab a − 1 b − 1 +1 1 + 1 1 � � (1 − ξ kb a ) (1 − ξ k a ) ξ kt � � � � a b 1 − ξ ja 1 − ξ j ξ jt a k =1 j =1 b b b has constant term L ∆ (0) = 1 and hence a − 1 b − 1 1 1 a ) + 1 1 � � (1 − ξ kb a ) (1 − ξ k � � � � a b 1 − ξ ja 1 − ξ j j =1 k =1 b b = 1 − 1 � 3 a + 3 b + 3 + a b + b a + 1 � 12 ab Dedekind Sums: A Geometric Viewpoint Matthias Beck 6

  18. An Example in Dimension 2 (Recall that ξ a := e 2 πi/a ) a − 1 b − 1 1 1 a ) + 1 1 � � (1 − ξ kb a ) (1 − ξ k � � � � a b 1 − ξ ja 1 − ξ j j =1 k =1 b b = 1 − 1 � 3 a + 3 b + 3 + a b + b a + 1 � 12 ab However... a − 1 a − 1 1 1 a ) = − 1 � πkb � � πk � + a − 1 � � cot cot (1 − ξ kb a ) (1 − ξ k a 4 a a a 4 a k =1 k =1 is essentially a Dedekind sum. Dedekind Sums: A Geometric Viewpoint Matthias Beck 7

  19. Dedekind Sums � x − ⌊ x ⌋ − 1 if x / ∈ Z , 2 Let ( ( x ) ) := if x ∈ Z , and define the Dedekind sum as 0 b − 1 � � ka � � � � k � � � s ( a, b ) := b b k =1 b − 1 1 � πja � � πj � � = cot cot . 4 b b b j =1 Dedekind Sums: A Geometric Viewpoint Matthias Beck 8

  20. Dedekind Sums � x − ⌊ x ⌋ − 1 if x / ∈ Z , 2 Let ( ( x ) ) := if x ∈ Z , and define the Dedekind sum as 0 b − 1 � � ka � � � � k � � � s ( a, b ) := b b k =1 b − 1 1 � πja � � πj � � = cot cot . 4 b b b j =1 Since their introduction by Dedekind in the 1880’s, these sums and their generalizations have appeared in various areas such as analytic (transformation law of η -function) and algebraic number theory (class numbers), topology (group action on manifolds), combinatorial geometry (lattice point problems), and algorithmic complexity (random number generators). Dedekind Sums: A Geometric Viewpoint Matthias Beck 8

  21. Dedekind Sums � x − ⌊ x ⌋ − 1 if x / ∈ Z , 2 Let ( ( x ) ) := if x ∈ Z , and define the Dedekind sum as 0 b − 1 � � ka � � � � k � � � s ( a, b ) := b b k =1 b − 1 1 � πja � � πj � � = cot cot . 4 b b b j =1 The identity L ∆ (0) = 1 implies... � a � s ( a, b ) + s ( b, a ) = − 1 4 + 1 b + 1 ab + b 12 a the Reciprocity Law for Dedekind sums. Dedekind Sums: A Geometric Viewpoint Matthias Beck 8

  22. Dedekind Sum Reciprocity b − 1 s ( a, b ) = 1 � πja � � πj � � cot cot . 4 b b b j =1 the Reciprocity Law � a � s ( a, b ) + s ( b, a ) = − 1 4 + 1 b + 1 ab + b 12 a together with the fact that s ( a, b ) = s ( a mod b, b ) implies that s ( a, b ) is polynomial-time computable (Euclidean Algorithm). Dedekind Sums: A Geometric Viewpoint Matthias Beck 9

  23. Ehrhart Theory Revisited P ∩ 1 � t P ∩ Z d � � t Z d � For t ∈ Z > 0 , let L P ( t ) := # = # . Theorem (Ehrhart 1962) If P is an rational polytope, then... ◮ L P ( t ) and L P ◦ ( t ) are quasi-polynomials in t of degree dim P . ◮ Leading term: vol( P ) (suitably normalized) ◮ (Macdonald 1970) L P ( − t ) = ( − 1) dim P L P ◦ ( t ) In particular, if t P ◦ ∩ Z d = ∅ then L P ( − t ) = 0 . Dedekind Sums: A Geometric Viewpoint Matthias Beck 10

  24. Rademacher Reciprocity If t P ◦ ∩ Z d = ∅ then L P ( − t ) = 0 . t ∆ ◦ = ( x, y ) ∈ R 2 � � > 0 : ax + by < t does not contain any lattice points for 1 ≤ t < a + b which gives for these t a − 1 b − 1 ξ jt ξ kt 1 a ) + 1 � � a b (1 − ξ kb a ) (1 − ξ k � � � � a b 1 − ξ ja 1 − ξ j j =1 k =1 b b � 1 = − t 2 � � 3 � 2 ab + t ab + 1 a + 1 − 1 a + 3 b + 3 + a b + b a + 1 . 2 b 12 ab Dedekind Sums: A Geometric Viewpoint Matthias Beck 11

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend