dean copsey university of california at davis with mark
play

+ Dean Copsey University of California at Davis With Mark Oskin - PowerPoint PPT Presentation

Memory Hierarchies for Quantum Computation + Dean Copsey University of California at Davis With Mark Oskin (UW), Fred Chong (Davis), Isaac Chuang (MIT), and Khaled Abdel-Gaffar (Davis) Overview Introduction to Quantum Computing


  1. Memory Hierarchies for Quantum Computation + Dean Copsey University of California at Davis With Mark Oskin (UW), Fred Chong (Davis), Isaac Chuang (MIT), and Khaled Abdel-Gaffar (Davis)

  2. Overview • Introduction to Quantum Computing • Error Correction • Memory Hierarchy • Future Work NSC '02 D. Copsey -- QC 2

  3. Quantum Bits (qubit) • 1 qubit probabilistically represents 2 states |a C 0 |0 C 1 |1 • Additional qubits double the number of states: |ab C 00 |00 C 01 |01 C 10 |10 C 11 |11 • Quantum parallelism on an exponential number of states • Measurement collapses qubit waveform to a single classical value NSC '02 D. Copsey -- QC 3

  4. Quantum Gates α X Gate 0 1 β α = 0 + 1 X β Bit-flip, Not 1 0 α Z Gate 1 0 α β = 0 - 1 Z β Phase-flip 0 -1 α α+β α−β H Gate 1 1 1 0 + 1 = H β Hadamard 2 1 -1 2 α T Gate 1 0 α i /4 β = e π 0 + 1 T π β e π Rotate /8 0 i /4 1 0 0 0 a Controlled Not a 00 + b 01 + 0 1 0 0 b Controlled X = 0 0 0 1 c d 10 + c 11 CNot X 0 0 1 0 d NSC '02 D. Copsey -- QC 4

  5. CAT State Creation H 0 + 1 00 + 11 00 0 2 2 NSC '02 D. Copsey -- QC 5

  6. Quantum Algorithms • Unordered Search: O(n 1/2 ) vs. O(n) [Grover96] • Large Number Factorization [Shor94] – O(n 3 ) vs. O(2 n/2 ) for known classical alg’s – Quantum Fourier Transform – Periodicity of Modular Exponentiation • Quantum Encryption • Quantum Teleportation NSC '02 D. Copsey -- QC 6

  7. Science Fiction? • 5 and 7-bit machines have been built [Vandersypen00, Laflamme99] – NMR, ion-trap and other technologies – Shor’s and Grover’s algorithms demonstrated • Larger machines are proposed • Solid-state technologies are coming [Kane98,Vrijen99,Nakamura99,Mooij99] NSC '02 D. Copsey -- QC 7

  8. General Purpose Machines will require: • thousands or millions of qubits • better technology • practical error rates are 10 -6 to 10 -9 • billions or trillions of operations (e.g., factoring a 1024-bit number: 5x10 11 ops) • hence, error correction NSC '02 D. Copsey -- QC 8

  9. Quantum Error Correction • Based on classical “linear” codes • Some codes have efficient operations – Steane’s [[7,1]] code • Operate on encoded data, error correct after each operation • Arbitrary level of encoding for reliability • Need to be reliable enough to run program to completion NSC '02 D. Copsey -- QC 9

  10. Quantum Error Correction Three Qubit Code Z 01 Z 12 Error Type Action +1 +1 no error no action -1 +1 bit 0 flipped flip bit 0 -1 -1 bit 1 flipped flip bit 1 +1 -1 bit 2 flipped flip bit 2 NSC '02 D. Copsey -- QC 10

  11. Error-Syndrome Measurement 0 H H Z 12 Ψ Ψ ' X 2 2 Ψ Ψ ' X 1 1 NSC '02 D. Copsey -- QC 11

  12. 3-bit Error Correction A H H Z 1 01 A H H Z 0 12 Ψ Ψ ' X Z 2 2 Ψ Ψ ' X X Z 1 1 Ψ Ψ ' X Z 0 0 NSC '02 D. Copsey -- QC 12

  13. Concatenated Codes Logical qubit First level . . . of encoding Second level . . . . . . . . . of encoding NSC '02 D. Copsey -- QC 13

  14. Error Correction Overhead 7-qubit code [Steane96] , applied recursively Recursion Storage Operations Min. time ( 153 k ) ( 5 k ) (7 k ) (k) 0 1 1 1 1 7 153 5 2 49 23,409 25 3 343 3,581,577 125 4 2,401 547,981,281 625 5 16,807 83,841,135,993 3125 NSC '02 D. Copsey -- QC 14

  15. Recursion Requirements from: [Oskin, et al, 2002] Shor’s Grover’s NSC '02 D. Copsey -- QC 15

  16. Memory Hierarchy Processor Cache Memory qubits lines pages teleport teleport More physical qubits Greater density Less complex More complex operations code NSC '02 D. Copsey -- QC 16

  17. Teleporting Between Codes source H |a |b CNOT EPR Pair target ( CAT ) |c |a X Z • Source generates |bc EPR pair • Pre-communicate |c to target with retry • Classical communication to set value • Can be used to convert between codes NSC '02 D. Copsey -- QC 17

  18. Denser Error Correction Codes • [[7,1]] code [Steane96] – Efficient operations • [[5,1]] code [Laflamme, et al, 96] • [[8,3]] code [Steane96, Gottesman 96] Overhead per qubit Code Storage Operations 3.5 x 10 6 [[7x7x7,1]] 343 3.1 x 10 6 [[5x7x7,1]] 245 2.2 x 10 6 [[8x7x7,3]] 130.67 0.8 x 10 6 [[8x8x8,3x3x3]] < 19 NSC '02 D. Copsey -- QC 18

  19. Quantum Fourier Transform Generic 9-qubit QFT H R R R R R R R R 2 3 4 5 6 7 8 9 H R R R R R R R 2 3 4 5 6 7 8 H R R R R R R 2 3 4 5 6 7 H R R 3 R R 5 R 6 2 4 H R R R R 5 2 3 4 H R 2 R 3 R 4 H R 2 R 3 H R 2 H Blocked for 3-qubit accesses H R R R R R R 7 R R 9 2 3 4 5 6 8 H R R R R R 6 R 7 R 8 2 3 4 5 H R R R R 5 R 6 R 7 2 3 4 H R R R R R 2 3 4 5 6 H R R 3 R 4 R 5 2 H R 2 R 3 R 4 H R R 2 3 H R 2 H NSC '02 D. Copsey -- QC 19

  20. Conclusion • Classical memory hierarchies reduce cost by accessing frequently used data fast • Quantum memory hierarchies reduce cost by decreasing the overhead of error correction • Our proposal, in a nutshell – Calculate on sparse encoding – Use denser codes for cache and RAM – Teleport between codes • Allows for solution of larger problems NSC '02 D. Copsey -- QC 20

  21. Future Work • Investigate different physical media – Different technologies, different primitives – Decoherence-free subspaces – High-genus surfaces • Investigate larger “linear” codes • Investigate non-linear codes – Toric codes – Iteratively decoded codes NSC '02 D. Copsey -- QC 21

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend