covering arrays with row limit bounds and constructions
play

Covering Arrays with Row Limit: Bounds and Constructions Nevena - PowerPoint PPT Presentation

Covering Arrays with Row Limit: Bounds and Constructions Nevena Franceti c Supervised by Prof. P. Danziger and Prof. E. Mendelsohn Discrete Maths Research Group Monash University September 22, 2014. Covering arrays N. Franceti c


  1. Covering Arrays with Row Limit: Bounds and Constructions Nevena Franceti´ c Supervised by Prof. P. Danziger and Prof. E. Mendelsohn Discrete Maths Research Group Monash University September 22, 2014.

  2. Covering arrays N. Franceti´ c (Monash) CARL s September 22, 2014.

  3. Covering arrays ... is a test suite ... N. Franceti´ c (Monash) CARL s September 22, 2014.

  4. Covering arrays ... is a test suite ... ... for verification of interactions between components. N. Franceti´ c (Monash) CARL s September 22, 2014.

  5. Example N. Franceti´ c (Monash) CARL s September 22, 2014.

  6. Example N. Franceti´ c (Monash) CARL s September 22, 2014.

  7. Example N. Franceti´ c (Monash) CARL s September 22, 2014.

  8. Example Components: outline, shadow, blinking, hidden N. Franceti´ c (Monash) CARL s September 22, 2014.

  9. Example Components: outline, shadow, blinking, hidden Levels for each component: present or absent (1 or 0) N. Franceti´ c (Monash) CARL s September 22, 2014.

  10. Example Components: outline, shadow, blinking, hidden Levels for each component: present or absent (1 or 0) What interactions? Pairwise interactions. N. Franceti´ c (Monash) CARL s September 22, 2014.

  11. Example Components: outline, shadow, blinking, hidden Levels for each component: present or absent (1 or 0) What interactions? Pairwise interactions. � 4 � 2 2 = 24 tests. Testing two at time: it would take 2 N. Franceti´ c (Monash) CARL s September 22, 2014.

  12. Example Outline Shadow Blinking Hidden 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  13. Example Outline Shadow Blinking Hidden 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  14. Example Outline Shadow Blinking Hidden 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 Testing can be done in only 5 iterations. N. Franceti´ c (Monash) CARL s September 22, 2014.

  15. Example Outline Shadow Blinking Hidden 0 0 0 0 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  16. Parameters of a Covering Array A covering array is characterized by: k : the number of components (columns) v : the number of levels for each component (alphabet size) t : strength ⇒ testing interactions between t columns N. Franceti´ c (Monash) CARL s September 22, 2014.

  17. Parameters of a Covering Array A covering array is characterized by: k : the number of components (columns) v : the number of levels for each component (alphabet size) t : strength ⇒ testing interactions between t columns Goal: find the smallest number of rows, called size N of a covering array. Size of an optimal CA is usually denoted by CAN ( t , k , v ). N. Franceti´ c (Monash) CARL s September 22, 2014.

  18. Some facts about covering arrays N. Franceti´ c (Monash) CARL s September 22, 2014.

  19. Some facts about covering arrays N = O (log k )) (Gargano et al., 1993) N. Franceti´ c (Monash) CARL s September 22, 2014.

  20. Some facts about covering arrays N = O (log k )) (Gargano et al., 1993) The exact size of a covering array is ONLY known for one family of arrays (Kleitman and Spencer, 1973; Katona, 1973): � N − 1 � CA ( N ; 2 , k , 2) exists for all k ≤ � N � 2 − 1 N. Franceti´ c (Monash) CARL s September 22, 2014.

  21. Some facts about covering arrays N = O (log k )) (Gargano et al., 1993) The exact size of a covering array is ONLY known for one family of arrays (Kleitman and Spencer, 1973; Katona, 1973): � N − 1 � CA ( N ; 2 , k , 2) exists for all k ≤ � N � 2 − 1 Finding an optimal covering array is NP-complete when extra constraints are imposed even when v = 2 (Maltais and Moura, 2011). N. Franceti´ c (Monash) CARL s September 22, 2014.

  22. More on covering arrays http://www.pairwise.org/tools.asp contains: 39 software tools for constructing CA s both commercial and open source N. Franceti´ c (Monash) CARL s September 22, 2014.

  23. Covering array with row limit ( CARL ) N. Franceti´ c (Monash) CARL s September 22, 2014.

  24. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) 0 0 − 1 − 0 0 − 1 1 1 − 0 1 0 − − 1 0 − 0 0 0 − 1 0 1 0 − − 1 − 0 − 1 0 1 − 1 − 0 1 1 1 − 1 − 1 − 0 0 1 0 − − 1 1 − 1 0 − 0 − 0 1 1 − 1 − 0 0 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  25. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) 1 2 3 4 5 6 1 0 0 − 1 − 0 k = the number of columns 2 0 − 1 1 1 − (components) 3 0 1 0 − − 1 4 0 − 0 0 0 − 5 1 0 1 0 − − 6 1 − 0 − 1 0 7 1 − 1 − 0 1 8 1 1 − 1 − 1 9 − 0 0 1 0 − 10 − 1 1 − 1 0 11 − 0 − 0 1 1 12 − 1 − 0 0 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  26. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) 1 2 3 4 5 6 1 0 0 − 1 − 0 k = the number of columns 2 0 − 1 1 1 − (components) 3 0 1 0 − − 1 4 0 − 0 0 0 − v = the alphabet size; the 5 1 0 1 0 − − number of different values assigned to a column 6 1 − 0 − 1 0 7 1 − 1 − 0 1 8 1 1 − 1 − 1 9 − 0 0 1 0 − 10 − 1 1 − 1 0 11 − 0 − 0 1 1 12 − 1 − 0 0 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  27. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) 1 2 3 4 5 6 1 0 0 − 1 − 0 k = the number of columns 2 0 − 1 1 1 − (components) 3 0 1 0 − − 1 4 0 − 0 0 0 − v = the alphabet size; the 5 1 0 1 0 − − number of different values assigned to a column 6 1 − 0 − 1 0 7 1 − 1 − 0 1 w = row limit; the number of 8 1 1 − 1 − 1 non-empty cells in a row 9 − 0 0 1 0 − 10 − 1 1 − 1 0 11 − 0 − 0 1 1 12 − 1 − 0 0 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  28. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) 1 2 3 4 5 6 k = the number of columns 1 0 0 − 1 − 0 (components) 2 0 − 1 1 1 − v = the alphabet size; the 3 0 1 0 − − 1 number of different values 4 0 − 0 0 0 − assigned to a column 5 1 0 1 0 − − w = row limit; the number of 6 1 − 0 − 1 0 7 1 − 1 − 0 1 non-empty cells in a row 8 1 1 − 1 − 1 t = strength 9 − 0 0 1 0 − 10 − 1 1 − 1 0 11 − 0 − 0 1 1 12 − 1 − 0 0 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  29. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) 1 2 3 4 5 6 k = the number of columns 1 0 0 − 1 − 0 (components) 2 0 − 1 1 1 − v = the alphabet size; the 3 0 1 0 − − 1 number of different values 4 0 − 0 0 0 − assigned to a column 5 1 0 1 0 − − w = row limit; the number of 6 1 − 0 − 1 0 7 1 − 1 − 0 1 non-empty cells in a row 8 1 1 − 1 − 1 t = strength 9 − 0 0 1 0 − N = size; goal find minimum N 10 − 1 1 − 1 0 11 − 0 − 0 1 1 12 − 1 − 0 0 0 N. Franceti´ c (Monash) CARL s September 22, 2014.

  30. Covering arrays vs CARL s CAN ( t , k , v ) ≤ CARLN ( t , k , v : w ( k )) N. Franceti´ c (Monash) CARL s September 22, 2014.

  31. Covering arrays vs CARL s CAN ( t , k , v ) ≤ CARLN ( t , k , v : w ( k )) Theorem ( Gargano et al.(1993)) lim sup CAN (2 , k , v ) = Θ (log k ) . k →∞ N. Franceti´ c (Monash) CARL s September 22, 2014.

  32. Covering arrays vs CARL s CAN ( t , k , v ) ≤ CARLN ( t , k , v : w ( k )) Theorem ( Gargano et al.(1993)) lim sup CAN (2 , k , v ) = Θ (log k ) . k →∞ Ω (log k ) = CAN (2 , k , v ) ≤ CAN ( t , k , v ) ≤ CARLN ( t , k , v : w ( k )) N. Franceti´ c (Monash) CARL s September 22, 2014.

  33. Sch¨ onheim lower bound Theorem CARLN λ ( t , k , v : w ) ≥ SB ( t , k , v : w ) � vk � v ( k − 1) � v ( k − t + 1) � �� SB ( t , k , v : w ) = · · · . . . . w w − 1 w − t + 1 CARL (12; 2 , 6 , 2: 4) N. Franceti´ c (Monash) CARL s September 22, 2014.

  34. Sch¨ onheim lower bound w ( k ) = c , c ∈ N : � k � t � v t (1 + o (1)) CARLN ( t , k , v : w ) = � w t N. Franceti´ c (Monash) CARL s September 22, 2014.

  35. Sch¨ onheim lower bound w ( k ) = c , c ∈ N : � k � t � v t (1 + o (1)) CARLN ( t , k , v : w ) = � w t CARLN ( t , k , v : w ) = Θ ( k t ) N. Franceti´ c (Monash) CARL s September 22, 2014.

  36. Sch¨ onheim lower bound w ( k ) = c , c ∈ N : � k � t � v t (1 + o (1)) CARLN ( t , k , v : w ) = � w t CARLN ( t , k , v : w ) = Θ ( k t ) k t lim k →∞ w ( k ) t log k = 0 SB ( t , k , v : w ( k )) lim = 0 log k k →∞ N. Franceti´ c (Monash) CARL s September 22, 2014.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend