covering arrays with row limit
play

Covering Arrays with Row Limit Ottawa-Carleton Discrete Mathematics - PowerPoint PPT Presentation

Covering Arrays with Row Limit Ottawa-Carleton Discrete Mathematics Days University of Ottawa Nevena Franceti c Supervised by Prof. E. Mendelsohn and Prof. P. Danziger Department of Mathematics University of Toronto May 13-14, 2011.


  1. Covering Arrays with Row Limit Ottawa-Carleton Discrete Mathematics Days University of Ottawa Nevena Franceti´ c Supervised by Prof. E. Mendelsohn and Prof. P. Danziger Department of Mathematics University of Toronto May 13-14, 2011.

  2. Overview Introduction 1 Definition Some equivalent objects Goal w = o ( k ) 2 Bounds Constructions w ∼ ck , 0 < c ≤ 1 3 Bounds N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 2 / 19

  3. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) : components 1 2 3 4 5 6 1 0 0 ∅ 1 ∅ 0 2 0 ∅ 1 1 1 ∅ t e 3 0 1 0 ∅ ∅ 1 ∅ ∅ s 4 0 0 0 0 5 1 0 1 0 ∅ ∅ t ∅ ∅ 6 1 0 1 0 7 1 ∅ 1 ∅ 0 1 r u 8 1 1 ∅ 1 ∅ 1 9 ∅ 0 0 1 0 ∅ n s 10 ∅ 1 1 ∅ 1 0 11 ∅ 0 ∅ 0 1 1 12 ∅ 1 ∅ 0 0 0 N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 3 / 19

  4. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) : components 1 2 3 4 5 6 1 0 0 ∅ 1 ∅ 0 2 0 ∅ 1 1 1 ∅ t e 3 0 1 0 ∅ ∅ 1 ∅ ∅ s 4 0 0 0 0 5 1 0 1 0 ∅ ∅ t ∅ ∅ 6 1 0 1 0 7 1 ∅ 1 ∅ 0 1 r u 8 1 1 ∅ 1 ∅ 1 9 ∅ 0 0 1 0 ∅ n s 10 ∅ 1 1 ∅ 1 0 11 ∅ 0 ∅ 0 1 1 12 ∅ 1 ∅ 0 0 0 N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 4 / 19

  5. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) : components In general, 1 2 3 4 5 6 CARL λ ( N ; t , k , { v 1 , v 2 , . . . , v k } : w ). 1 0 0 ∅ 1 ∅ 0 2 0 ∅ 1 1 1 ∅ t e 3 0 1 0 ∅ ∅ 1 ∅ ∅ s 4 0 0 0 0 5 1 0 1 0 ∅ ∅ t ∅ ∅ 6 1 0 1 0 7 1 ∅ 1 ∅ 0 1 r u 8 1 1 ∅ 1 ∅ 1 9 ∅ 0 0 1 0 ∅ n s 10 ∅ 1 1 ∅ 1 0 11 ∅ 0 ∅ 0 1 1 12 ∅ 1 ∅ 0 0 0 N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 4 / 19

  6. Covering array with row limit ( CARL ) CARL ( N = 12; t = 2 , k = 6 , v = 2: w = 4) : components In general, 1 2 3 4 5 6 CARL λ ( N ; t , k , { v 1 , v 2 , . . . , v k } : w ). 1 0 0 ∅ 1 ∅ 0 2 0 ∅ 1 1 1 ∅ t Applicable for testing in studies in: e 3 0 1 0 ∅ ∅ 1 pharmacology, ∅ ∅ s 4 0 0 0 0 medicine, 5 1 0 1 0 ∅ ∅ t ∅ ∅ 6 1 0 1 0 agriculture, 7 1 ∅ 1 ∅ 0 1 r chemistry, u 8 1 1 ∅ 1 ∅ 1 etc. 9 ∅ 0 0 1 0 ∅ n s 10 ∅ 1 1 ∅ 1 0 11 ∅ 0 ∅ 0 1 1 12 ∅ 1 ∅ 0 0 0 N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 4 / 19

  7. Ck v C1 C2 C3 C4 ... Equivalent objects w = k : CA ( N ; t , k , v ). v = 1: t − ( k , w , λ ) covering ( V , B ): N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 5 / 19

  8. Equivalent objects w = k : CA ( N ; t , k , v ). v = 1: t − ( k , w , λ ) covering ( V , B ): Ck v C1 C2 C3 C4 ... N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 5 / 19

  9. Equivalent objects w = k : CA ( N ; t , k , v ). v = 1: t − ( k , w , λ ) covering ( V , B ): Ck v C1 C2 C3 C4 ... N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 6 / 19

  10. What is the optimal size of a CARL ? Given t ≤ w ≤ k and v , we need to determine the smallest possible size of a CARL ( t , k , v : w ), denoted by CARLN ( t , k , v : w ). Also, we need to construct these objects. N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 7 / 19

  11. A lower bound Theorem (Sch¨ onheim bound, (Franceti´ c et al.)) � vk � v ( k − 1) � λ v ( k − t + 1) � �� CARLN λ ( t , k , v : w ) ≥ · · · . . . . w w − 1 w − t + 1 CARL (12; 2 , 6 , 2: 4) N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 8 / 19

  12. Sch¨ onheim bound for fixed w and t = 2 Corollary � vk � v ( k − 1) �� CARLN (2 , k , v : w ) ≥ . w w − 1 Alon, Caro and Yuster (1998): bound is optimal for large k and w fixed. Heinrich and Yin (1999): w = 3. N.F., P. Danziger, E. Mendelsohn: w = 4 with regular excess graph. N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 9 / 19

  13. Sch¨ onheim bound for fixed w and t = 2 Corollary � vk � v ( k − 1) �� CARLN (2 , k , v : w ) ≥ . w w − 1 Alon, Caro and Yuster (1998): bound is optimal for large k and w fixed. Heinrich and Yin (1999): w = 3. N.F., P. Danziger, E. Mendelsohn: w = 4 with regular excess graph. Any t ≥ 3: R¨ odl(1985): w is fixed, v = 1, the bound is optimal . N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 9 / 19

  14. CARL s with w = o ( k 1 / ( t +1) ) N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 10 / 19

  15. CARL s with w = o ( k 1 / ( t +1) ) Theorem (Sch¨ onheim bound) � vk � v ( k − 1) � v ( k − t + 1) � �� CARLN ( t , k , v : w ) ≥ · · · . . . . w − 1 w − t + 1 w N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 10 / 19

  16. CARL s with w = o ( k 1 / ( t +1) ) Theorem (Sch¨ onheim bound) � vk � v ( k − 1) � v ( k − t + 1) � �� CARLN ( t , k , v : w ) ≥ · · · . . . . w − 1 w − t + 1 w Extending the proof of R¨ odl(1985) using the interpretation of given by Alon and Spencer(2000), we get the following: Theorem (N.F.) If lim k →∞ w t +1 = 0 , then k � k � t � v t (1 + o (1)) CARLN ( t , k , v : w ) = � w t k ( k − 1) · · · ( k − t + 1) w ( w − 1) · · · ( w − t + 1) v t (1 + o (1)) . = N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 10 / 19

  17. PARL s with w = o ( k 1 / ( t +1) ) Also, we can extend this result to the Packing Arrays with Row Limit ( PARL ): Theorem (N.F.) If lim k →∞ w t +1 = 0 , then k � k v t � t � (1 + o (1)) . PARLN ( t , k , v : w ) = � w t N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 11 / 19

  18. CARL s with w = o ( k ) Theorem (N.F.) If lim k →∞ w k = 0 , then � k � � � w �� t � v t CARLN ( t , k , v : w ) ≤ 1 + ln . � w t t N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 12 / 19

  19. CARL s with w = o ( k ) Theorem (N.F.) If lim k →∞ w k = 0 , then � k � � � w �� t � v t CARLN ( t , k , v : w ) ≤ 1 + ln . � w t t Conjecture (N.F.) Let w be a non-decreasing function of k. When lim k →∞ w k = 0 , there exists an optimal CARL ( t , k , v : w ) meeting the Sch¨ onheim bound for large enough k. N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 12 / 19

  20. Wilson construction Example: If k ≡ 3 (mod 6), k ≥ 33, there exists a 4 − GDD of type k − 9 6 9 1 , ( V , G , B ). 6 ...... ...... ...... ......... ... N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 13 / 19

  21. Wilson construction Example: If k ≡ 3 (mod 6), k ≥ 33, there exists a 4 − GDD of type k − 9 6 9 1 , ( V , G , B ). 6 Let { b 1 , b 2 , b 3 , b 4 } ∈ B . Let v = 3. N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 14 / 19

  22. Wilson construction Example: If k ≡ 3 (mod 6), k ≥ 33, there exists a 4 − GDD of type k − 9 6 9 1 , ( V , G , B ). 6 Let { b 1 , b 2 , b 3 , b 4 } ∈ B . Let v = 3. · · · · · · b 1 b 2 b 3 b 4 · · · · · · ∅ ∅ 1 1 1 1 ∅ ∅ ∅ ∅ ∅ ∅ 1 2 2 2 ∅ ∅ 1 3 3 3 ∅ ∅ ∅ ∅ ∅ ∅ 2 1 3 2 ∅ ∅ 2 2 1 3 ∅ ∅ ∅ ∅ 2 3 2 2 ∅ ∅ ∅ ∅ 3 1 2 3 ∅ ∅ ∅ ∅ 3 2 3 1 ∅ ∅ ∅ ∅ 3 3 1 2 ∅ ∅ N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 14 / 19

  23. Wilson construction Example: If k ≡ 3 (mod 6), k ≥ 33, there exists a 4 − GDD of type k − 9 6 9 1 , ( V , G , B ). 6 ...... ...... ...... ......... ... CARL(2,6,v:4) CARL(2,6,v:4) CARL(2,6,v:4) CARL(2,9,v:4) N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 15 / 19

  24. CARL s with w = o ( k ) and t = 2 We can apply the Wilson construction. From affine planes we get the following: Theorem There exists an optimal CARL ( q 3 ( q + 1); 2 , q 2 , q : q ) for all prime powers q. N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 16 / 19

  25. CARL s with w = o ( k ) and t = 2 We can apply the Wilson construction. From affine planes we get the following: Theorem There exists an optimal CARL ( q 3 ( q + 1); 2 , q 2 , q : q ) for all prime powers q. Lemma (N.F) Let q be a prime power. If there exists an optimal CARL (( q 2 − q )( q 2 − 1); 2 , q 2 − q , q : q ) , then there exists an optimal CARL (( q 2 − q )( q + 1)( q 3 + q 2 − 1); 2 , q 3 − q , q : q ) . N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 16 / 19

  26. CARL s with w = o ( k ) and t = 3 Theorem Let q be a prime power and k ≡ 2 , 4 (mod 6) . There exists an optimal CARL ( N ; 3 , k , q : 4) with N = k ( k − 1)( k − 2) q 3 . 24 N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 17 / 19

  27. CARL s with w = o ( k ) and t = 3 Theorem Let q be a prime power and k ≡ 2 , 4 (mod 6) . There exists an optimal CARL ( N ; 3 , k , q : 4) with N = k ( k − 1)( k − 2) q 3 . 24 Theorem Let q be a prime power. There exists an optimal CARL q ( N ; 3 , q 2 + 1 , q ; q + 1) of size N = q 5 ( q 2 + 1) . N. Franceti´ c (University of Toronto) CARL s May 13-14, 2011. 17 / 19

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend