correla ons within non equilibrium green s func ons method
play

Correla'ons within Non-equilibrium Greens Func'ons method Hossein - PowerPoint PPT Presentation

Correla'ons within Non-equilibrium Greens Func'ons method Hossein Mahzoon MSU Pawel Danielewicz Arnau Rios (University of surrey) Introduction to Non-Equilibrium Greens functions (NEGF) Applications of NEGF Infinite nuclear


  1. Correla'ons within Non-equilibrium Green’s Func'ons method Hossein Mahzoon MSU Pawel Danielewicz Arnau Rios (University of surrey)

  2. • Introduction to Non-Equilibrium Green’s functions (NEGF) • Applications of NEGF • Infinite nuclear matter • Finite system

  3. Why NEGF • Evolution of correlated/uncorrelated quantum many-body systems can be described in a consistent way in NEGF formalism A Φ ( x 1 ...x A ; t ) = 1 • TDHF : X Y ( − 1) sgn σ φ α ( x sgn σ , t ) A ! α =1 σ ∂ 2 ⇢ � − 1 i ∂ ∂ t φ α ( x, t ) = ∂ x 2 + U ( x ) φ α ( x, t ) 2 m • limitations on allowed excitations The validity of TDHF requires a negligible role played by correlations in the dynamics • NEGF is suitable for central reactions due to averaging over more than one-body effect

  4. The Contour h O H ( t ) i = h U ( t 0 , t ) O I ( t ) U ( t, t 0 ) i R t R t D T a h ⇣ ⌘i O I ( t ) T c h ⇣ ⌘iE = exp t 0 d τ H ( τ ) exp t 0 d τ H ( τ ) − i − i R t U ( t 0 , t ) = T a h ⇣ ⌘i exp t 0 d τ H ( τ ) where t > t 0 i introducing a contour running along the time and a T operator ordering along the contour. t 0 t t 0 P. Danielewicz: Annals of physics 152. 239-304(1984)

  5. Kadanoff-Baym Equations a † (1)ˆ G < ( x 1 , t 1 ; x 1 0 , t 1 0 ) ! G < (1 , 1 0 ) = i h ˆ a (1 0 ) i a † (1 0 ) i G > ( x 1 , t 1 ; x 1 0 , t 1 0 ) ! G > (1 , 1 0 ) = � i h ˆ a (1)ˆ + ~ 2 ∂ 2  � i ~ ∂ Z G ? = 1 Σ HF (1¯ 1) G ? (¯ 11 0 ) dx ¯ ∂ x 2 2 m ∂ t 1 1 Z t 1 Z t 1 0 d ¯ Σ > (1¯ 1) − Σ < (1¯ G ? (¯ d ¯ 1 Σ ? (1¯ G > (¯ 11 0 ) − G < (¯ ⇥ ⇤ ⇥ ⇤ 11 0 ) − 11 0 ) + 1 1) 1) t 0 t 0 + ~ 2 ∂ 2  � − i ~ ∂ Z G ? = 1 Σ HF (1¯ 1) G ? (¯ 11 0 ) dx ¯ ∂ x 0 2 ∂ t 0 2 m 1 1 Z t 1 Z t 1 0 d ¯ G > (1¯ 1) − G < (1¯ Σ ? (¯ d ¯ 1 G ? (1¯ Σ > (¯ 11 0 ) − Σ < (¯ ⇥ ⇤ ⇥ ⇤ 11 0 ) − 11 0 ) + 1 1) 1) t 0 t 0

  6. Kadanoff-Baym Equations + ~ 2 ∂ 2  � i ~ ∂ Z G ? = 1 Σ HF (1¯ 1) G ? (¯ 11 0 ) dx ¯ ∂ x 2 2 m ∂ t 1 1 Σ HF Z t 1 Z t 1 0 d ¯ Σ > (1¯ 1) − Σ < (1¯ G ? (¯ d ¯ 1 Σ ? (1¯ G > (¯ 11 0 ) − G < (¯ ⇥ ⇤ ⇥ ⇤ 11 0 ) − 11 0 ) + 1 1) 1) t 0 t 0 Σ ?

  7. HF approximation • In HF approximation : Σ HF (12) = δ ( t 1 − t 2 ) Σ HF ( x 1 , x 2 ) • KB equations reduces to: ∂ 2 ∂ 2  − 1 ∂ x 2 + U ( x, t ) + 1 � i ∂ ∂ tG < ( x, x 0 ; t ) = G < ( x, x 0 ; t ) ∂ x 0 2 − U ( x 0 , t ) 2 m 2 m ρ ( x, x 0 ; t ) = − iG < ( x, t ; x 0 , t )

  8. Adiabatically switching • Adiabatic switching ( 1 , t → −∞ H ( t ) = F ( t ) H 0 + [1 − F ( t )] H 1 F ( t ) = 0 , t → t i 1 F ( t ) = f ( t ) − f ( t f ) f ( t ) = 1 + e t/ τ f ( t i ) − f ( t f ) • Preparing the initial state H 0 = 1 2 kx 2 H 1 = U mf U mf ( x ) = 3 4 t 0 n ( x ) + 2 + σ 16 t 3 [ n ( x )] σ +1

  9. Switching function time [fm/c] M. Watanaba et all, PRL 65,no. 26, page3301

  10. Collision of two slabs A. Rios et al :Annals of Physics 326 (2011) 1274

  11. Correlations • Equation incorporating the interactions: Z dp 1 dp 2 Σ ? ( p, t ; p 0 , t 0 ) = 2 π V ( p − p 1 ) V ( p 0 − p 2 ) G ? ( p 1 , t ; p 2 , t 0 ) Π ? ( p − p 1 , t ; p 0 − p 2 , t 0 ) 2 π Z dp 1 dp 2 Π ? ( p, t ; p 0 , t 0 ) = 2 π G ? ( p 1 , t ; p 2 , t 0 ) G ? ( p 2 − p 0 , t 0 ; p 1 − p, t ) 2 π 1 − 2 x 2 ✓ ◆ e − x 2 √ π ( η p ) 2 e − ( η p )2 V ( x ) = V 0 η 2 V ( p ) = V 0 4 η 2 The parameters are chosen to result reasonable physical quantities such as depletion number A. Rios et al :Annals of Physics 326 (2011) 1274

  12. infinite nuclear matter Energy/particle 0 ∆ E corr V old − 5 20 Total Energy V new = V old − ∆ E corr Kinetic energy − 10 MF Correlaton Energy − 15 0 E/A [MeV] E/A [MeV] − 20 − 25 -20 − 30 − 35 -40 − 40 − 45 0 10 20 30 40 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 0 . 30 time [fm/c] n [fm − 3 ] Density in coordinate space +

  13. Density in momentum space k [fm -1 ]

  14. EOS in infinite nuclear matter 0 V old mf U old mf − 10 Etot − 20 E/A [MeV] − 30 − 40 − 50 − 60 0 . 00 0 . 05 0 . 10 0 . 15 0 . 20 0 . 25 0 . 30 n [fm − 3 ] Density in coordinate space

  15. Finite nuclear matter • Starting from harmonic oscillator Hamiltonian • Adiabatically switching on mean-field and correlations • Technicalities: – Setting cut-off for energy ( dx ) and finding the appropriate dt – Starting from different initial ω HO – Friction term

  16. Solving two-time equations t 2 G < ( t 1 , T + ∆ t ) t 2 T G > ( T + ∆ t, t 2 ) t 1 t 1 t 0 T Using symmetries: G 7 (1 , 2) = − [ G 7 (2 , 1)] ∗ G < ( t 1 , T + ∆ t ) = G < ( t 1 , T ) e i ε ∆ t − I < 1 − e i ε ∆ t � 2 ( t 1 , T ) ε − 1 � G > ( T + ∆ t, t 2 ) = e i ε ∆ t G > ( T, t 2 ) − 1 − e − i ε ∆ t � ε − 1 I > � 1 ( T, t 2 ) G < ( T + ∆ T, T + ∆ T )

  17. Different starting points 40 ω 1.5 ω 30 2 ω 2.5 ω 20 E/A [MeV] 10 0 -10 -20 -30 0 20 40 60 80 100 time [fm/c] Starting from different frequencies, energy arrives to the same final value

  18. Observables and central density 0.4 2 ω ω 1.5 ω 1.5 ω 1.8 0.35 2 ω 2 ω 2.5 ω 2.5 ω 1.6 0.3 <x> [fm] -3 ] 1.4 n [fm 0.25 1.2 0.2 1 0.15 0.8 0.1 0 20 40 60 80 100 120 140 0 20 40 60 80 100 120 140 160 180 200 time [fm/c] time [fm/c] • Comparing the time evolution of central density (in coordinate space) and the size of the system, for different initial cases, • They all converge to the same final value

  19. Density Density n(x) [fm -3 ] x [fm] Time evolution of the density in the coordinate space,

  20. Friction term • A time-dependent external potential A. Bulgac et. al U t ≡ U t ( x ) hNps://arxiv.org/abs/1305.6891 • As long as , U t ∝ ˙ ρ the local quantum friction potential cools the system c ˙ ρ • The friction term can be implemented in both momentum and coordinate space

  21. Effect of friction term 0.35 friction No friction 0.3 -3 ] ρ (x=0) [fm 0.25 0.2 0.15 0 20 40 60 80 100 120 time [fm/c]

  22. Effect of friction term 2 friction No friction 1.8 1.6 <x> [fm] 1.4 1.2 1 0 20 40 60 80 100 120 time [fm/c]

  23. occupation number Occupation number Density n(x) [fm -3 ] x [fm]

  24. What is next • Including isospin dependency in the formalism • Performing the collision of slabs

  25. Thanks!

  26. Occupation number 1.2 "nofric_w_N1_moreaccurate/ocnum.dat" 1 0.8 0.6 0.4 0.2 0 0 5 10 15 20

  27. Application: Metal Oxide Semiconductors(MOS) • The quantitative simulation tools for the new generation of devices will require atomic-level quantum mechanical models . • The NEGF provides a conceptual basis for this new simulators Fermi levels µ 2 µ 1 • The device is driven out of equilibrium by two contacts with different Fermi levels Device • NGF can be used to determine the density matrix contact2 contact1 Supriyo Datta : Superlattices and Microstructures, Vol. 28, No. 4, 2000

  28. Scale ∆ ⌧ = ~ ✏ τ f τ f = ~ ∆ τ Γ Γ = ~ n σ v ∼ 50 MeV The energy, , is of the same order ✏

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend