copulas an introduction part ii models
play

Copulas: An Introduction Part II: Models Johan Segers Universit - PowerPoint PPT Presentation

Copulas: An Introduction Part II: Models Johan Segers Universit catholique de Louvain (BE) Institut de statistique, biostatistique et sciences actuarielles Columbia University, New York City 911 Oct 2013 Johan Segers (UCL) Copulas. II -


  1. Copulas: An Introduction Part II: Models Johan Segers Université catholique de Louvain (BE) Institut de statistique, biostatistique et sciences actuarielles Columbia University, New York City 9–11 Oct 2013 Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 1 / 65

  2. Copulas: An Introduction Part II: Models Archimedean copulas Extreme-value copulas Elliptical copulas Vines Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 2 / 65

  3. Copulas: An Introduction Part II: Models Archimedean copulas Extreme-value copulas Elliptical copulas Vines Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 3 / 65

  4. The (in)famous Archimedean copulas ◮ By far the most popular (theory & practice) class of copulas ◮ Plenty of parametric models ◮ Gumbel, Clayton, Frank, Joe, Ali–Mikhail–Haq, . . . ◮ Building block for more complicated constructions: ◮ Nested/Hierarchical Archimedean copulas ◮ Vine copulas ◮ Archimax copulas ◮ . . . ◮ Mindless application of (Archimedean) copulas has drawn many criticisms on the copula ‘hype’ Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 4 / 65

  5. Laplace transform of a positive random variable Recall the Laplace transform of a random variable Z > 0: � ∞ e − sz d F Z ( z ) , ψ ( s ) = E [ exp ( − sZ )] = s ∈ [ 0 , ∞ ] 0 A distribution on ( 0 , ∞ ) is identified by its Laplace transform. Ex. Show the following properties: ◮ 0 ≤ ψ ( s ) ≤ 1 ◮ ψ ( 0 ) = 1 and ψ ( ∞ ) = 0 . ◮ ( − 1 ) k d k ψ ( s ) / d s k ≥ 0 for all integer k ≥ 1 . ◮ In particular, ψ is nonincreasing ( k = 1 ) and convex ( k = 2 ). Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 5 / 65

  6. Survival functions in proportional hazards model: The Laplace transform of the frailty appears Independent unit exponential random variables Y 1 , . . . , Y d . Survival times X 1 , . . . , X d are affected by a common ‘frailty’ Z > 0: X j = Y j / Z Marginal and joint survival functions: Pr [ X j > x j ] = E [ e − x j Z ] = ψ ( x j ) Pr [ X 1 > x 1 , . . . , X d > x d ] = E [ e − ( x 1 + ··· + x d ) Z ] = ψ ( x 1 + · · · + x d ) Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 6 / 65

  7. In proportional hazards models, survival copulas are Archimedean The survival copula of X is Archimedean with generator ψ : � � ¯ ψ − 1 ( u 1 ) + · · · + ψ − 1 ( u d ) C ( u 1 , . . . , u d ) = ψ Ex. Show the above formula. Ex. Show that replacing Z by β Z for a constant β > 0 changes ψ but does not change the copula. Ex. Pick your favourite (discrete/continuous) distribution on ( 0 , ∞ ) , compute or look up its Laplace transform, and compute the associated Archimedean copula. If it doesn’t exist yet, name it after yourself and publish a paper about it. Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 7 / 65

  8. A Gamma frailty induces the Clayton copula If Z ∼ Gamma ( 1 /θ, 1 ) , with 0 < θ < ∞ , then � ∞ e − sz z 1 /θ − 1 e − z d z = ( 1 + s ) − 1 /θ ψ ( s ) = Γ( 1 /θ ) 0 and the resulting survival copula is Clayton: C ( u ) = ( u − θ ¯ + · · · + u − θ − d + 1 ) − 1 /θ 1 d Ex. Check the above formulas. Ex. How to use the frailty representation to sample from a Clayton copula? Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 8 / 65

  9. Generator of the Clayton copula Generator Inverse generator w = ψ ( s ) s = ψ − 1 ( w ) 2.0 2.0 1.5 1.5 w 1.0 1.0 s 0.5 0.5 0.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 s w s = ψ − 1 ( w ) = w − θ − 1 w = ψ ( s ) = ( 1 + s ) − 1 /θ Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 9 / 65

  10. Formal definition of an Archimedean copula A copula C is Archimedean if there exists ψ : [ 0 , ∞ ] → [ 0 , 1 ] such that � � ψ − 1 ( u 1 ) + · · · + ψ − 1 ( u d ) C ( u ) = ψ For C to be a copula, it is sufficient and necessary that ψ satisfies ◮ ψ ( 0 ) = 1 and ψ ( ∞ ) = 0 ◮ ψ is d -monotone, i.e. ◮ ( − 1 ) k d k ψ ( s ) / d s k ≥ 0 for k ∈ { 0 , . . . , d − 2 } ◮ ( − 1 ) d − 2 d d − 2 ψ ( s ) / d s d − 2 is decreasing and convex Equivalently, there should exists a random variable Z > 0 such that �� � d − 1 � sZ ψ ( s ) = E 1 − d − 1 + i.e. ψ is the Williamson d -transform of the rv ( d − 1 ) / Z . Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 10 / 65

  11. Standard examples Ex. The independence copula Π( u ) = u 1 · · · u d is Archimedean. ◮ What is its generator ψ ? ◮ What is the frailty variable Z ? Ex. The Fréchet–Hoeffding lower bound W ( u , v ) = max ( u + v − 1 , 0 ) is Archimedean too. What is its generator ψ ? [This ψ is not a Laplace transform; it is 2 -monotone but not d -monotone for d ≥ 3 .] Ex. One can show that the Fréchet–Hoeffding upper bound M ( u ) = min ( u 1 , . . . , u d ) is not Archimedean. Still, show that the Clayton copula with θ → ∞ converges to M . Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 11 / 65

  12. Common generator functions w = ψ ( s ) w = ψ ( s ) 2.0 2.0 1.5 1.5 1.0 1.0 w w 0.5 0.5 0.0 0.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 s s Π( u ) = u 1 · · · u d W ( u , v ) = max ( u + v − 1 , 0 ) ψ ( s ) = e − s ψ ( s ) = max ( 1 − s , 0 ) Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 12 / 65

  13. Bivariate Archimedean copulas as binary operators A bivariate Archimedean copula induces a binary operator [ 0 , 1 ] × [ 0 , 1 ] → [ 0 , 1 ] : ( u , v ) �→ C ( u , v ) which is commutative and associative: C ( u , v ) = C ( v , u ) , C ( u , C ( v , w )) = C ( C ( u , v ) , w ) endowing [ 0 , 1 ] with a semi-group structure. Link with the theory of associative functions (A BEL , H ILBERT ). Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 13 / 65

  14. Derived quantities Conditional cdf: C j ( u ) = ψ ′ � � ψ − 1 ( u 1 ) + · · · + ψ − 1 ( u d ) ˙ ψ ′ � � ψ − 1 ( u j ) Pdf, provided ψ is d times continuously differentiable c ( u ) = ψ ( d ) � � ψ − 1 ( u 1 ) + · · · + ψ − 1 ( u d ) � d j = 1 ψ ′ � � ψ − 1 ( u j ) Ex. Show these formulas. Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 14 / 65

  15. Yet another probability integral transform: Kendall distribution functions Bivariate cdf H , continuous margins F and G , copula C . The Kendall distribution of a random pair ( X , Y ) ∼ H is the cdf of the rv W = H ( X , Y ) = C ( F ( X ) , G ( Y )) = C ( U , V ) It only depends on H through C : � K C ( w ) = Pr ( W ≤ w ) = [ 0 , 1 ] 2 1 { C ( u , v ) ≤ w } d C ( u , v ) , w ∈ [ 0 , 1 ] It is linked to Kendall’s tau via � 1 � [ 0 , 1 ] 2 C ( u , v ) d C ( u , v ) = 1 + τ E [ W ] = w d K C ( w ) = 4 0 Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 15 / 65

  16. Kendall distribution functions: The C -probability below a C -level curve contour plot of C(u, v) = uv 1.0 0.9 0.8 0.8 0.7 0 0.6 . 6 K ( w ) = 0.5 v � 0.4 0 . 4 [ 0 , 1 ] 2 1 { C ( u , v ) ≤ w } d C ( u , v ) 0.3 0.2 0.2 0.1 0.0 0.0 0.2 0.4 0.6 0.8 1.0 u Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 16 / 65

  17. Bivariate Archimedean copulas are identified by their Kendall distribution function The Kendall distribution function of a bivariate Archimedean copula with inverse generator φ = ψ − 1 : ( 0 , 1 ] → [ 0 , ∞ ) is K ( w ) = w − λ ( w ) , λ ( w ) = φ ( w ) 1 φ ′ ( w ) = d log φ ( w ) / d w ≤ 0 Up to a multiplicative constant, φ and thus ψ can be reconstructed from λ . Ex. Show the following properties: ◮ K Π ( w ) = w − w log ( w ) (independence) ◮ K W ( w ) = 1 (Fréchet–Hoeffding lower bound) ◮ K M ( w ) = w (Fréchet–Hoeffding upper bound) ◮ w ≤ K ( w ) ≤ 1 Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 17 / 65

  18. Kendall distribution functions: Stochastically smaller than the uniform one Kendall distribution function 1.0 0.8 0.6 K(w) 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 w Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 18 / 65

  19. The tail behaviour of a bivariate Archimedean copula can be read off from the inverse generator function Coefficient of lower tail dependence: C ( w , w ) = 2 − 1 /θ 0 , λ L ( C ) = lim w w ↓ 0 w φ ′ ( w ) where θ 0 = − lim ∈ [ 0 , ∞ ] φ ( w ) w ↓ 0 Coefficient of upper tail dependence: λ U ( C ) = λ L (¯ C ) = 2 − 2 1 /θ 1 , w φ ′ ( 1 − w ) where θ 1 = − lim ∈ [ 1 , ∞ ] φ ( 1 − w ) w ↓ 0 ⇒ Construction of models with different upper and lower tails Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 19 / 65

  20. Archimedean copulas enjoy many symmetries Let ( U 1 , . . . , U d ) ∼ C and C is Archimedean with generator ψ . ◮ Permuation symmetry: For any permuation σ of { 1 , . . . , d } , ( U σ ( 1 ) , . . . , U σ ( d ) ) d = ( U 1 , . . . , U d ) ◮ Closure of margins: For any subset 1 ≤ j 1 < · · · < j k ≤ d , ( U j 1 , . . . , U j k ) ∼ k -variate Archimedean, same generator ψ Symmetry is a blessing (simplicity) and a curse (lack of flexibility). The only radially symmetric Archimedean copula ( C = ¯ C ) is the Frank copula. Johan Segers (UCL) Copulas. II - Models Columbia University, Oct 2013 20 / 65

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend