algebraic properties of copulas defined from matrices
play

Algebraic properties of copulas defined from matrices C ecile - PowerPoint PPT Presentation

Introduction A new family of copulas Algebraic properties Dependence properties Projection on C Examples Conclusion Algebraic properties of copulas defined from matrices C ecile Amblard*, St ephane Girard**, Ludovic Menneteau***


  1. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Algebraic properties of copulas defined from matrices C´ ecile Amblard*, St´ ephane Girard**, Ludovic Menneteau*** Krakow, july 2012 *LIG, University Grenoble 1, France, **Inria Grenoble & LJK, France, ***I3M University Montpellier 2, France. 1 / 24

  2. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Introduction Extension of the bivariate family [Amblard Girard 2002] c ( u , v ) = 1 + θφ ( u ) φ ( v ) , c ( u , v ) = t φ ( u ) A φ ( v ) where : t { 1 , φ 2 ( u ) , · · · , φ p ( u ) } , - φ ( u ) = - { φ i } is an orthonormal family of functions, - A ∈ R p × p is a symmetric matrix such that t e 1 = (1 , 0 , · · · , 0) . Ae 1 = e 1 , with For which A and φ , c ( u , v ) is a density of copula ? 2 / 24

  3. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Plan Definition of the family of copulas C φ , Algebraic properties of the set of convenient matrices A φ and of the copulas family C φ , Dependence properties of the family C φ , Projection on C φ , Examples. 3 / 24

  4. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion A new family of copulas Defnition : c ( u , v ) = t φ ( u ) A φ ( v ) - φ ( u ) = t { 1 , φ 2 ( u ) , · · · , φ p ( u ) } , - { φ i } is an orthonormal family of functions, using L 2 ( R ) scalar product : � 1 < φ i , φ j > = φ i ( t ) φ j ( t ) dt , 0 - A ∈ R p × p is a symmetric matrix such that Ae 1 = e 1 , with e 1 = t (1 , 0 · · · , 0) . 4 / 24

  5. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion A new family of copulas � � A ∈ R p × p , t A = A , Ae 1 = e 1 , A φ = ∀ ( u , v ) ∈ [0 , 1] 2 , t φ ( u ) A φ ( v ) ≥ 0 � � c : [0 , 1] 2 → R , C φ = c ( u , v ) = t φ ( u ) A φ ( v ) , A ∈ A φ 5 / 24

  6. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion A new family of copulas Properties : � 1 0 φ ( t ) dt = e 1 :   � 1 0 1 dv � 1 � 1    0 φ 2 ( v ) dv  φ ( v ) dv =  ,    · · · 0 � 1 0 φ p ( v ) dv = e 1 because { φ i } is orthonormal. 6 / 24

  7. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion A new family of copulas A φ is not empty, A 1 = e t 1 e 1 ∈ A φ C φ is a set of copulas density. Positivity : ∀ ( u , v ) ∈ R 2 , c ( u , v ) ≥ 0, Uniform marginals : � 1 � 1 t φ ( u ) A c ( u , v ) dv = φ ( v ) dv , 0 0 t φ ( u ) e 1 , = = 1 7 / 24

  8. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion A new family of copulas Each copula of C φ is defined by one unique matrix : t φ ( u ) A φ ( v ) = t φ ( u ) B φ ( v ) ⇒ φ ( u ) t φ ( u ) A φ ( v ) t φ ( v ) = φ ( u ) t φ ( u ) B φ ( v ) t φ ( v ) �� 1 0 φ ( u ) t φ ( u ) A φ ( v ) t φ ( v ) dudv �� 1 ⇒ 0 φ ( u ) t φ ( u ) B φ ( v ) t φ ( v ) dudv = � 1 � 1 0 φ ( u ) t φ ( u ) duA 0 φ ( v ) t φ ( v ) dv ⇒ � 1 � 1 0 φ ( u ) t φ ( u ) duB 0 φ ( v ) t φ ( v ) dv = ⇒ A = B because { φ i } is an orthonormal family. 8 / 24

  9. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Examples The copula associated to A 1 = e 1 t e 1 is the independent copula Π, � � 1 0 If p = 2 , necessarily A = and 0 θ c ( u , v ) = 1 + θφ ( u ) φ ( v ) [ Amblard Girard 2002 ], The cubic family [ Nelsen et al. 1997 ] can be written in our formalism (p=3), If { φ i } is an orthonormal family and ∀ ( u , v ) ∈ [0 , 1] 2 t φ ( u ) φ ( v ) ≥ 0 , t φ ( u ) φ ( v ) ∈ C φ I p ∈ A φ and 9 / 24

  10. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Algebraic properties of A φ A φ is a convex set, A 1 = e 1 t e 1 ∈ A φ , ( A φ , × ) is a semi group : � 1 t φ ( u ) AB φ ( v ) t φ ( u ) A φ ( y ) t φ ( y ) dyB φ ( v ) , = 0 � 1 ( t φ ( u ) A φ ( y ))( t φ ( y ) B φ ( v )) dy , = 0 ≥ 0 . - ABe 1 = e 1 , - the product × is an associative operator. If I p ∈ A φ , ( A φ , × ) is a monoid. 10 / 24

  11. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Algebraic properties of C φ C φ is a convex set, Π ∈ C φ , ( C φ , ⋆ ) is a semi group : - � 1 � c A ⋆ c B ( u , v ) c A ( u , s ) c B ( s , v ) ds , 0 � 1 t φ ( u ) A φ ( s ) t φ ( s ) B φ ( v ) ds , = 0 � 1 t φ ( u ) A φ ( s ) t φ ( s ) dsB φ ( v ) , = 0 t φ ( u ) AI p B φ ( v ) . = - the operator ⋆ is associative, t φ ( u ) φ ( v ) ∈ C φ , ( C φ , ⋆ ) is a monoid . If 11 / 24

  12. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Isomorphism between A φ and C φ Definition : T φ : { copulas } → R p × p �� 1 φ ( x ) c ( x , y ) t φ ( y ) dxdy c �→ 0 T φ ( c ) e 1 = e 1 . T φ is an isomorphism between ( A φ , × ) and ( C φ , ⋆ ) : Each matrix of A φ defines a copula of C φ , T φ associates to a copula of C φ its matrix A , T φ ( c A ⋆ c B ) = A × B . 12 / 24

  13. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Isomorphism between A φ and C φ T φ ( c ) e 1 = e 1 : �� φ ( x ) c ( x , y ) t φ ( y ) e 1 dydx T φ ( c ) e 1 = �� = φ ( x ) c ( x , y ) φ 1 ( y ) dydx � � 1 = φ ( x ) c ( x , y )1 dydx 0 � 1 = φ ( x )1 dx 0 = e 1 13 / 24

  14. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Dependence coefficients Spearman ’s Rho : �� 1 ρ φ � 12 C ( u , v ) dudv − 3 0 = 12 t µ A µ − 3 , � 1 where µ = x φ ( x ) dx . 0 If A = diag { a i , i } , ρ φ = 12 � p i =2 a i , i µ 2 i Tail dependence coefficient : ¯ C ( u , u ) λ φ = P ( V ≥ u | U ≥ u ) = 1 − u = 0 . 14 / 24

  15. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Projection on C φ Definition : P ( c )( u , v ) = t φ ( u ) T φ ( c ) φ ( v ) If I p ∈ A φ , P ( c )( u , v ) is a copula : P ( c )( u , v ) = t φ ( u ) T φ ( c ) φ ( v ) �� 1 = t φ ( u ) t φ ( x ) c ( x , y ) φ ( y ) dxdy φ ( v ) �� 1 0 t φ ( u ) φ ( x ) c ( x , y ) t φ ( y ) φ ( v ) dxdy = 0 = c I p ⋆ c ⋆ c I p ( u , v ) if I p ∈ A φ If I p ∈ A φ ; P ( c )( u , v ) ∈ C φ . 15 / 24

  16. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Projection on C φ � 1 0 c 1 ⋆ c 2 ( u , u ) du defines a Scalar product . P is an orthogonal projection on ( C φ , <> ) : P ( P ( c )) = P ( c ) : P ( P ( c )( u , v ) = t φ ( u ) T φ ( P ( c )) φ ( v ) �� 1 t φ ( u ) 0 φ ( x ) P ( c )( x , y ) t φ ( y ) dxdy φ ( v ) , = �� t φ ( u ) φ ( x ) t φ ( x ) T φ ( c ) φ ( y ) t φ ( y ) dxdy φ ( v ) = � � = t φ ( u ) φ ( x ) t φ ( x ) dxT φ ( c ) t φ ( y ) φ ( y ) dy φ ( v ) = t φ ( u ) T φ ( c ) φ ( v ) , = P ( c ) . ∀ s ∈ C φ , < c − P ( c ) , s > = 0. 16 / 24

  17. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Projection on C φ ∀ s ∈ C φ , < c − P ( c ) , s > = 0 �� c ( u , t ) t φ ( t ) A φ ( u ) dtdu < c , s > = �� c ( u , t ) tr ( t φ ( t ) A φ ( u )) dtdu = �� c ( u , t ) φ ( u ) t φ ( t ) dtduA ) = tr ( = tr ( T φ ( c ) A ) . �� t φ ( u ) T φ ( c ) φ ( t ) t φ ( t ) A φ ( u ) dtdu < P ( c ) , s > = = tr ( T φ ( c ) A ) . 17 / 24

  18. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Example : FGM family √ φ ( x ) = 3(1 − 2 x ) , A = diag { 1 , θ } , | θ | ≤ 1 / 3, Copula : c ( u , v ) = 1 + 3 θ (1 − 2 u )(1 − 2 v ) , I p / ∈ A φ . ”Projection ”on C φ : T φ ( c ) = diag { 1 , � θ } �� � θ = 3 c ( x , y )(1 − 2 x )(1 − 2 y ) dxdy �� = 3[4 xyc ( x , y ) dxdy − 1] = ρ c . If | ρ c | ≤ 1 / 3 , P ( c ) is a FGM copula and ρ P ( c ) = ρ c , If | ρ c | > 1 / 3 , P ( c ) is not a copula. 18 / 24

  19. Introduction A new family of copulas Algebraic properties Dependence properties Projection on C φ Examples Conclusion Example : trigonometric family  φ 0 ( x ) = 1 ,  √ φ 2 j − 1 ( x ) = 2 sin(2 π jx ) , A = diag { 1 , θ, θ, · · · } √  φ 2 j ( x ) = 2 cos(2 π jx ) Copula : c k ( x , y ) = 1 + 2 θ [ H k ( x − y ) − 1] , H k ( t ) = sin((2 k + 1) π t ) the Dirichlet Kernel. sin( π t ) � k Spearman’s rho : ρ k ( θ ) = 6 θ 1 π 2 j =1 j 2 ρ 1 (1 / 2) = 3 π 2 ≃ 0 . 3 , ρ 2 (1 / 2) = 15 4 π 2 ≃ 0 . 38 , 98 ρ 3 (4 / 9) = 27 π 2 ≃ 0 . 37 . 19 / 24

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend