modeling jump dependence using l evy copulas
play

Modeling Jump Dependence using L evy copulas Andrea Krajina, - PowerPoint PPT Presentation

Modeling Jump Dependence using L evy copulas Andrea Krajina, Institut f ur Matematische Stochastik, G ottingen Joint work with Roger Laeven, Tilburg University and EURANDOM EURANDOM, Eindhoven, August, 2011. 1 / 25 Outline


  1. Modeling Jump Dependence using L´ evy copulas Andrea Krajina, Institut f¨ ur Matematische Stochastik, G¨ ottingen Joint work with Roger Laeven, Tilburg University and EURANDOM EURANDOM, Eindhoven, August, 2011. 1 / 25

  2. Outline � Introduction – L´ evy process – L´ evy copula � M-Estimator – Definition. Asymptotic properties – Simulation study: Clayton copula � Example: MSCI equity index data (Europe) 2 / 25

  3. L´ evy process � bivariate L´ evy process: a stochastic process Y = ( Y 1 , Y 2 ) such that – Y 0 = (0 , 0) ; – independent and stationary increments; – stochastically continuous. e i � z, Y � � = e φ ( z ) , where � � by L´ evy -Khintchine representation: E φ ( z ) = i � γ, z �− 1 � � e i � z,y � − 1 − i � z, y � 1 {| y | ≤ 1 } � 2 � z, A z � + ν ( dy ) , R 2 \ (0 , 0) evy process: ( γ, A , ν ) , with γ ∈ R 2 , A ∈ R 2 × 2 and a positive any L´ sigma-finite measure ν on R 2 \ { (0 , 0) } . 3 / 25

  4. L´ evy copula � denote R := ( −∞ , ∞ ] 2 is 2 -increasing if � a function F : S → R , S ⊆ R F ( a 1 , a 2 ) + F ( b 1 , b 2 ) − F ( a 1 , b 2 ) − F ( b 1 , a 2 ) ≥ 0 , for all ( a 1 , a 2 ) , ( b 1 , b 2 ) ∈ S with a 1 ≤ b 1 , a 2 ≤ b 2 2 → R is a L´ � a function F : R evy copula if – F ( u 1 , u 2 ) � = ∞ , if ( u 1 , u 2 ) � = ( ∞ , ∞ ) , – F ( u 1 , u 2 ) = 0 , if u i = 0 , for at least one i = 1 , 2 , – F is 2 -increasing – F i ( u ) = u , i = 1 , 2 , u ∈ R 4 / 25

  5. L´ evy copula 2 is the tail integral of a L´ � a function U : R 2 \ { (0 , 0) } → R , S ⊆ R evy process with the L´ evy measure ν if U ( x 1 , x 2 ) = sgn ( x 1 ) sgn ( x 2 ) ν ( I ( x 1 ) × I ( x 2 )) , where � ( x 1 , ∞ ) , if x 1 ≥ 0 , I ( x 1 ) = ( −∞ , x 1 ] , if x 1 < 0 . � L´ evy copula vs. copula 5 / 25

  6. L´ evy copula � Theorem (Kallsen and Tankov) Let F be a bivariate L´ evy copula and U 1 and U 2 the tail integrals of its marginal processes. Then there exists a bivariate L´ evy process Y whose components have tail integrals U 1 and U 1 , and such that U I (( x i ) i ∈ I ) = F I (( U i ( x i )) i ∈ I ) for any non-empty I ⊆ { 1 , 2 } . The L´ evy measure ν is uniquely determined by U 1 , U 2 and F . 6 / 25

  7. L´ evy copula. Limit relation � Theorem (Kallsen and Tankov) Let X = ( X 1 , X 2 ) be a bivariate L´ evy process with L´ evy copula F and tail integrals U 1 and U 2 . Denote by C ( α 1 ,α 2 ) : [0 , 1] 2 → [0 , 1] a copula of t ( − α 1 X 1 , − α 2 X 2 ) , for t ∈ (0 , ∞ ) 2 and α 1 , α 2 ∈ {− 1 , 1 } . Then t → 0 C ( sgn u 1 , sgn u 2 ) F ( u 1 , u 2 ) = lim ( t | u 1 | , t | u 2 | ) sgn u 1 sgn u 2 , t for any ( u 1 , u 2 ) ∈ Ran ( U 1 ) × Ran ( U 2 ) 7 / 25

  8. M-Estimator: Basic Assumptions � bivariate L´ evy process Y observed at n distinct times separated by ∆ n : Y ∆ n , Y 2∆ n , . . . , Y n ∆ n � n increments: Y ∆ n , Y 2∆ n − Y ∆ n , . . . , Y n ∆ n − Y ( n − 1)∆ n � sample X 1 , . . . , X n , where X i = Y i ∆ n − Y ( i − 1)∆ n , with distribution function H and marginals H 1 and H 2 � assume that its L´ evy copula F belongs to a parametric family F ∈ { F θ : θ ∈ Θ ⊆ R p } , 8 / 25

  9. M-Estimator: Nonparametric Estimator � nonparametric estimator of F (Laeven) n �� � R 1 F ( u 1 , u 2 ) := sgn ( u 1 ) sgn ( u 2 )1 i > n + 1 − ku 1 , if u 1 ≥ 0 ˆ � 1 , R 1 k i ≤ k | u 1 | , if u 1 < 0 i =1 � � R 2 i > n + 1 − ku 2 , if u 2 ≥ 0 R 2 i ≤ k | u 2 | , if u 2 < 0 – R j i is the rank of X ij among X 1 j , . . . , X nj , j = 1 , 2 – k ∈ { 1 , 2 , . . . , n } � k = k n → ∞ and k/n → 0 when n → ∞ � ∆ n → 0 and n ∆ n → ∞ when n → ∞ 9 / 25

  10. M-Estimator: Definition � let T > 0 ; denote S T := [ − T, T ] 2 ∩ Ran ( U 1 ) × Ran ( U 2 ) � let g ≡ ( g 1 , . . . , g q ) T : T → R q , q ≥ p , be an integrable function such that ϕ : Θ → R q defined by � ϕ ( θ ) := g ( u ) F ( u ; θ ) d u T is a homeomorphism between Θ and its image ϕ (Θ) � M-estimator ˆ θ n of θ 0 is defined as the minimizer of the criterion function q � 2 �� � � � ˆ Q k,n ( θ ) = g m ( x ) F n ( x ) − F ( x ; θ ) d x T m =1 10 / 25

  11. M-Estimator: Asymptotic Properties � existence, uniqueness and consistency � asymptotic normality � conditions: – there exists α ≥ 1 such that k/n − ∆ n = o ( k/n ) α ; – F has continuous first derivatives F 1 and F 2 , – there exist α > 0 and c > 0 such that, as t → 0 , t − 1 C ( sgn ( u 1 ) , sgn ( u 2 )) ( t | u 1 | , t | u 2 | ) sgn ( u 1 ) sgn ( u 2 ) − F ( u 1 , u 2 ) = O ( t α ) t uniformly on { ( u 1 , u 2 ) ∈ Ran ( U 1 ) × Ran ( U 2 ): u 2 1 + u 2 2 = c } , – for the α from (AN2), k/n − ∆ n = O (( k/n ) 1+ α ) and k = o ( n 2 α/ (1+2 α ) ) ; 11 / 25

  12. M-Estimator: Consistency Theorem 1 (Consistency) If the following conditions are satisfied, (C1) Θ is open, (C2) ϕ is a homeomorphism from Θ to ϕ (Θ) , (C3) ϕ is a twice continuously differentiable, (C4) ˙ ϕ ( θ 0 ) is of full rank; (C5) k = k n is an intermediate sequence: k → ∞ and k/n → 0 , as n → ∞ , (C6) ∆ n is such that ∆ n → 0 and n ∆ n → ∞ , (C7) there exists α ≥ 1 such that k/n − ∆ n = o ( k/n ) α ; then with probability tending to one the criterion function Q k,n has a unique P minimizer ˆ θ n , and ˆ → θ 0 , as n → ∞ . θ n 12 / 25

  13. M-Estimator: Asymptotic Normality Theorem 2 (Asymptotic normality) If in addition to the assumptions (C1)-(C6) of Theorem 1 the following assumptions hold, (AN1) F has continuous first derivatives F (1) and F (2) , (AN2) there exist α > 0 and c > 0 such that, as t → 0 , t − 1 C ( sgn ( u 1 ) , sgn ( u 2 )) ( t | u 1 | , t | u 2 | ) sgn ( u 1 ) sgn ( u 2 ) − F ( u 1 , u 2 ) = O ( t α ) t uniformly on { ( u 1 , u 2 ) ∈ Ran ( U 1 ) × Ran ( U 2 ): u 2 1 + u 2 2 = c } , (AN3) for the α from (AN2), k/n − ∆ n = O (( k/n ) 1+ α ) and k = o ( n 2 α/ (1+2 α ) ) ; then as n → ∞ , √ → N ((0 , 0) T , M ( θ 0 )) . d k (ˆ θ n − θ 0 ) (2) 13 / 25

  14. Simulation Study: Clayton L´ evy Copula � Clayton L´ evy copula is given by | u 1 | − ζ + | u 2 | − ζ � − 1 /ζ � F ( u 1 , u 2 ) = ( η 1 { u 1 u 2 ≥ 0 } − (1 − η ) 1 { u 1 u 2 < 0 } ) , with parameters ζ > 0 and η ∈ [0 , 1] � ζ > 0 unknown, η = 1 fixed � L´ evy process: bivariate Poisson jump diffusion d X t = µ d t + σ d W t + J d N t 14 / 25

  15. Simulation Study: Clayton L´ evy Copula � ν ( d x ) = λ 1 f 1 ( x 1 ; θ 1 ) d x 1 + λ 2 f 2 ( x 2 ; θ 2 ) d x 2 + λ 12 f 12 ( x 1 , x 2 ; θ 12 ) d x 1 d x 2 , � model parameters: µ = (0 , 0) , λ + 1 + λ + 12 = λ + 2 + λ + 12 = 6 , θ 1 = θ 2 = 1 / 30 , σ = (0 . 1 , 0 . 1) , ρ = 0 . 4 , three different values for the L´ evy copula parameter ζ ∈ { 0 . 3 , 1 , 3 } � simulations: 50 samples of size n = 7500 , corresponding to T n = 30 and ∆ n = 1 / 250 (e.g. daily returns over 30 years) 15 / 25

  16. Simulation Study: Clayton L´ evy Copula ζ =0.3, with Brownian noise ζ =1, with Brownian noise 0.25 0.20 0.20 0.15 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0.00 0.05 0.10 0.15 0.20 0.25 0.00 0.05 0.10 0.15 ζ =3, with Brownian noise 0.15 0.10 0.05 0.00 0.00 0.05 0.10 0.15 16 / 25

  17. Simulation Study: Clayton L´ evy Copula Clayton family with ζ =0.3, η =1; M−est. of ζ , rep=50 Clayton family with ζ =0.3, η =1; M−est. of ζ , rep=50 0.42 0.12 T=5 T=10 0.40 0.10 0.38 0.08 RMSE ^ ζ 0.36 0.06 0.34 0.04 0.32 0.02 T=5 0.30 0.00 T=10 20 40 60 80 100 20 40 60 80 100 k k Figure 1: Estimation of ζ = 0 . 3 , for different values of k and T . 17 / 25

  18. Simulation Study: Clayton L´ evy Copula Clayton family with ζ =1, η =1; M−est. of ζ , rep =50 Clayton family with ζ =1, η =1; M−est. of ζ , rep =50 T=5 1.05 T=5 T=10 0.20 T=10 0.15 1.00 RMSE ^ ζ 0.10 0.95 0.05 0.00 0.90 20 40 60 80 100 20 40 60 80 100 k k Figure 2: Estimation of ζ = 1 , for different values of k and T . 18 / 25

  19. Simulation Study: Clayton L´ evy Copula Clayton family with ζ =3, η =1; M−est. of ζ , rep =50 Clayton family with ζ =3, η =1; M−est. of ζ , rep =50 3.0 T=5 T=10 1.0 2.9 0.8 2.8 2.7 0.6 RMSE ^ ζ 2.6 0.4 2.5 0.2 2.4 T=5 T=10 2.3 0.0 20 40 60 80 100 20 40 60 80 100 k k Figure 3: Estimation of ζ = 3 , for different values of k and T . 19 / 25

  20. Simulation Study: Clayton L´ evy Copula � jump dependence coefficient: F (1 , 1) = 2 − 1 / 0 . 3 ≈ 0 . 099 Clayton(0.3,1); M− and nonpar. est. of F(1,1)=0.099, rep=50 Clayton(0.3,1); M− and nonpar. est. of F(1,1)=0.099, rep=50 0.20 T=5 T=10 non.par. 0.18 0.10 0.16 0.08 0.14 0.06 F ( 1 , 1 ) RMSE ^ 0.12 0.04 0.10 0.02 T=5 0.08 T=10 non.par. 0.00 20 40 60 80 100 20 40 60 80 100 k k Figure 4: Estimation of F (1 , 1) = 2 − 1 / 0 . 3 ≈ 0 . 099 , for different values of k and T . 20 / 25

  21. Simulation Study: Clayton L´ evy Copula � jump dependence coefficient: F (1 , 1) = 2 − 1 / 1 = 0 . 5 Clayton(1,1); M− and nonpar. est. of F(1,1)=0.5, rep=50 Clayton(1,1); M− and nonpar. est. of F(1,1)=0.5, rep=50 0.52 T=5 T=10 T=5 non.par. T=10 0.51 non.par. 0.15 0.50 0.49 0.10 F ( 1 , 1 ) RMSE ^ 0.48 0.05 0.47 0.46 0.00 20 40 60 80 100 20 40 60 80 100 k k Figure 5: Estimation of F (1 , 1) = 0 . 5 , for different values of k and T . 21 / 25

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend