homogenization of the l evy operators with asymmetric l
play

Homogenization of the L evy operators with asymmetric L evy - PDF document

Homogenization of the L evy operators with asymmetric L evy measures Mariko ARISAWA Wolfgang Pauli Institute Faculty of Maths., Univ. Vienna E-mail: mariko.arisawa@univie.ac.at Periodic homogenisation problem: (P) u t + F ( x,


  1. Homogenization of the L´ evy operators with asymmetric L´ evy measures Mariko ARISAWA Wolfgang Pauli Institute Faculty of Maths., Univ. Vienna E-mail: mariko.arisawa@univie.ac.at

  2. Periodic homogenisation problem: (P) ∂u ε ∂t + F ( x, u ε , ∇ u ε , ∇ 2 u ε ) − c ( x � ε ) R N [ u ε ( x + z ) − u ε ( x ) − 1 | z | < 1 �∇ u ε ( x ) , z � ] q ( z ) dz = 0 x ∈ Ω , x ∈ Ω c , u ε ( x, t ) = φ ( x ) t > 0 , u ε ( x, 0) = u 0 x ∈ Ω . • Is there a unique limit : ∃ lim ε ↓ 0 u ε ( x ) = u ( x ) ? • Characterize u by an effective PIDE: ∂u ∂t + I ( x, u, ∇ u, ∇ 2 u, I [ u ]) = 0 t > 0 .

  3. Type I (Pure Jump Process). • Linear problem: Ex. F = 0 . • First-order nonlinear problem: Ex. F = a ( x ) | p | . Type II (Jump-Diffusion process). F : uniformly elliptic, i.e. ∃ θ > 0 ∀ Q ′ ≥ O, F ( x, u, p, Q + Q ′ ) <F ( x, u, p, Q ) − θTrQ ′ Ex. F ( x, u, ∇ u, ∇ 2 u ) = − Tr ( ∇ 2 u ) = − ∆ u .

  4. Method . In the case of PDE (elliptic, parabolic), the effective PDE is obtained by • Formal asymptotic expansion • Cell problem (ergodic problem of PDE) • Averaging principle in the underlying stochas- tic process • Rigorous justification : for nonlinear PDEs Perturbed test function method by using viscosity solutions References. A. Bensoussain, J.-L. Lions, and G. Papanicolaou, P.-L. Lions, G. Papanico- laou, and S.R.S. Varadhan, L.C. Evans, etc.

  5. M. A. Homogenizations of PIDE with L´ evy op- erators, submitted. M.A. Some remarks on the homogenizations of L´ evy operators with asymmetric densities, in preparation.

  6. Pure jump case . � − R N [ u ( x + z ) − u ( x ) − 1 | z | < 1 �∇ u ( x ) , z � ] q ( z ) dz � � | z | < 1 | z | 2 q ( z ) dz + s.t. | z | > 1 1 q ( z ) dz < ∞ . Homogenisations � Regularization effect (averaging principle) � Singular L´ evy density Examples. α • Symmetric α -stable process ( − ∆ 2 , 0 < α < 2) 1 q ( z ) dz = | z | N + α ( dz ) . Remark. As α → 2, the operator tends to − ∆.

  7. • α -Stable process ( N = 1, 0 < α < 2) 1 q ( z ) dz = c 1 | z | 1+ α ( dz ) z < 0 , 1 = c 2 | z | 1+ α ( dz ) z > 0 where c 1 , c 2 ≥ 0, and at least one c i � = 0. • CGMY model ( N = 1, C > 0, G ≥ 0, M ≥ 0, 0 < Y < 2) 1 q ( z ) dz = C ( I z< 0 e − G | z | + I z> 0 e − M | z | ) | z | 1+ Y ( dz ) . • Asymmetric singularity ( N = 1, 0 < α 1 < α 2 < 2) 1 q ( z ) dz = c 1 | z | 1+ α 1 ( dz ) z < 0 , 1 = c 2 | z | 1+ α 2 ( dz ) z > 0

  8. • Nonlinear operator ( N = 2, 0 < α 1 , α 2 < 2) � max {− R [ u ( x 1 + z 1 , x 2 ) − u ( x 1 , x 2 ) 1 − 1 | z 1 | < 1 �∇ x 1 u ( x ) , z 1 � ] | z 1 | 1+ α 1 dz 1 , � − R [ u ( x 1 , x 2 + z 2 ) − u ( x 1 , x 2 ) 1 − 1 | z 2 | < 1 �∇ x 2 u ( x ) , z 2 � ] | z 2 | 1+ α 2 dz 2 }

  9. Jump diffusion case . Homogenisations � Regularization effect (averaging principle) � Effect of the diffusion of ” − ∆ ” Examples . (Bdd L´ evy measures can be added.) • Discrete L´ evy measure q ( dz ) = c Σ d j =1 p j δ a j ( dz ) , p j ≥ 0, Σ d j =1 p j = 1, c > 0: frequency of the jump, a i : jump lengths. • Gaussian distribution 2 πv exp( −| z − m | 2 1 √ q ( z ) dz = c ) dz 2 v

  10. c > 0: frequency of the jump; jump distri- bution: the normal distribution. • Variance gamma process ( c , c 1 , c 2 > 0) q ( z ) dz = c ( I z< 0 e − c 1 | z | + I z> 0 e − c 2 | z | ) 1 | z | dz.

  11. Formal asymptotic expansion . Type I (Pure Jump Process). 1. Symmetric α -stable process (1 < α < 2) ∂u ε ∂t + |∇ u ε | − c ( x � ε ) R N [ u ε ( x + z ) − u ε ( x ) 1 | z | N + α dz − g ( x − 1 | z | < 1 �∇ u ε ( x ) , z � ] ε ) = 0 ⇓ u ε ( x, t ) = u ( x, t ) + ε α v ( x ε, t ) + o ( ε α ) ∇ u ε ( x, t ) = ∇ x u ( x, t ) + ε α − 1 ∇ y v ( x ε, t ) . ⇓ ∂u ∂t + |∇ u | − c ( x � ε ) R N [ u ( x + z ) − u ( x ) 1 − 1 | z | < 1 �∇ x u ( x ) , z � ] | z | N + α dz

  12. R N [ v ( x + z − ε α c ( x ) − v ( x � ε ) ε ) ε 1 ∇ y v ( x ε ) , z | z | N + α dz − g ( x � � − 1 | z | < 1 ] ε ) = 0 ε ⇓ ∂u � ∂t + |∇ u | − c ( y ) R N [ u ( x + z ) − u ( x ) 1 � R N [ v ( y + z ′ ) − 1 | z | < 1 �∇ x u ( x ) , z � ] | z | N + α dz − c ( y ) 1 ∇ y v ( y ) , z ′ � � − v ( y ) − 1 | z ′ | < 1 ] | z ′ | N + α dz − g ( y ) = 0 ε ⇓ Ergodic problem (Averaging principle) � R N [ v ( y + z ′ ) −∃ I ( x, u, ∇ u, I ) − c ( y ) I − c ( y ) 1 ∇ y v ( y ) , z ′ � � − v ( y ) − 1 | z ′ | < 1 ] | z ′ | N + α dz − g ( y ) = 0 , ε M.A. Proc.”Stoc. Processes and Applic. to Math. Finance”, World Scientifics, (2007)

  13. Effective integro-differential operators • Uniform sub-ellipticity: ∀ I ′ > 0 I ( x, r, p, I + I ′ ) <I ( x, r, p, I ) − ∃ θI ′ • I ( x, r, p, I + I ′ ) ∈ C (Ω × R × R N × R ). ⇓ Effective integro-differential equations u is the unique solution of ∂u ∂t + I ( x, u, ∇ u, I ) = 0 t > 0 . Remark. The formal argument is justified by the purturbed test fc. method. Remark. Asymmetric α -Stable process c 1 c 2 q ( z ) dz = 1 z< 0 | z | 1+ α dz + 1 z> 0 | z | 1+ α dz

  14. can be treated similarly. 2. Asymmetric singularity ( N = 1, 0 < α 1 < α 2 < 2) c 1 c 2 q ( z ) dz = 1 z < 0 | z | 1+ α 1 dz + 1 z < 0 | z | 1+ α 2 dz, i.e. � 0 ∂u ε ∂t + |∇ u ε | − c ( x ε ) −∞ [ u ε ( x + z ) − u ε ( x ) c 1 − 1 | z | < 1 �∇ u ε ( x ) , z � ] | z | 1+ α 1 dz � ∞ − c ( x 0 [ u ε ( x + z ) − u ε ( x ) ε ) | z | 1+ α 2 dz − g ( x c 2 − 1 | z | < 1 �∇ u ε ( x ) , z � ] ε ) = 0 ⇓ Stronger singularity dominates: u ε ( x, t ) = u ( x, t ) + ε α 2 v ( x ε, t ) + o ( ε α 2 )

  15. 3. Nonlinear operator ( N = 2, 0 < α 1 , α 2 < 2) ∂u ε ∂t + c ( x � ε ) max {− R [ u ε ( x 1 + z 1 , x 2 ) − u ε ( x 1 , x 2 ) 1 − 1 | z 1 | < 1 �∇ x 1 u ε ( x ) , z 1 � ] | z 1 | 1+ α 1 dz 1 , � − R [ u ε ( x 1 , x 2 + z 2 ) − u ε ( x 1 , x 2 ) 1 | z 2 | 1+ α 2 dz 2 } − g ( x − 1 | z 2 | < 1 �∇ x 2 u ε ( x ) , z 2 � ] ε ) = 0 . ⇓ Developpements in each directions: u ε ( x 1 , x 2 , t ) = u ( x, t ) + ε α 1 v ( x 1 ε , x 2 , t )+ ε α 2 w ( x 1 , x 2 ε , t )+ o ( ε α )

  16. Theorem. Let us consider the problem (P), which is either Type I or Type II. Let u ε be the solution of (P). Then, there is a unique fonc- tion lim ε ↓ 0 u ε = u exists, which is the unique solution of ∂u ∂t + I ( x, u, ∇ u, ∇ 2 u, I [ u ]) = 0 t > 0 , with the same initial and boundary conditions. Remark. The result is applied to a stochastic volatility model with jumps, in maths finances. (cf. Fouque, Papanicolaou, Sircar.)

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend