homogenizations of l evy operators with asymmetric
play

Homogenizations of L evy operators with asymmetric densities - - PDF document

Homogenizations of L evy operators with asymmetric densities - application to the stochastic volatility model - Mariko Arisawa Wilfgang Pauli Institut, University of Wien E-mail: mariko.arisawa@univie.ac.at I. Introduction 1.


  1. Homogenizations of L´ evy operators with asymmetric densities - application to the stochastic volatility model - Mariko Arisawa Wilfgang Pauli Institut, University of Wien E-mail: mariko.arisawa@univie.ac.at

  2. I. Introduction 1. Black-Scholes models : Risky asset (constant volatility) dX t = X t ( µdt + σdW t ) Riskless bond db ( t ) = rb ( t ) dt Final value of the European option V ( x, T ) = ( x − K ) + B-S equation 2 σ 2 x 2 ∂ 2 V ∂t ( x, t ) = 1 ∂V ∂x 2 ( x, t )+ rx∂V ∂x ( x, t ) − rV ( x, t ) x ∈ [0 , ∞ ) , t ≥ 0 , V ( x, T ) = ( x − K ) + x ∈ [0 , ∞ ) .

  3. Observations: • Analytical solution exists V ( x, t ): = C BS ( x, t ) = xN ( d 1 ) − Ke − r ( T − t ) N ( d 2 ) −∞ e − y 2 � z 1 2 dy . where N ( z ) = √ 2 π • Statistical study of the stock price indi- cates the jumps. • The constant volatility is not used in the market. • Implied volatility I : C BS ( t, x ; K, T ; ∃ ! I ) = C obs , and I ( K ) shows the smile curve.

  4. 2. Stochastic volatility models : Risky asset dX t = X t ( µdt + σ ( t ) dW t ) , where for f > 0 a function, σ ( t ) = f ( Y t ), Volatiliy process dY t = α ( m − Y t ) dt + d ˆ Z t , ˆ Z t : Brownian motion correlated with W t ; α : rate of mean reversion; m : long-run average of Y t . Y t ’s characteristics (cf. J.P. Fouque, G. Pa- panicolaou, K.R. Sircar) • Y t must be ergodic. • Y t can be a jump process. • As α = 1 ε → + ∞ , Y t oscillates very rapidly.

  5. Examples ( f ( y ) = √ y , e y , | y | ...) • Ornstein-Uhlenbeck process � 1 − ρ 2 dZ t ) dY t = α ( m − Y t ) dt + β ( ρdW t + • Log-normal process � 1 − ρ 2 dZ t ) dY t = c 1 Y t dt + c 2 Y t ( ρdW t + • Cox-Ingersoll-Ross (CIR) process � 1 − ρ 2 dZ t ) � dY t = κ ( m − Y t ) dt + ν Y t ( ρdW t + • Well-posedness (P.-L. Lions and M. Musiela, Ann.I.H.P. 2007) : at least the correlation ρ ∈ [ − 1 , − 1 2 ] is necessary. √

  6. 3. PIDE for stochastic volatility models. (i) Rescaled stochastic volatility model (PDE case). (Fouque,Papanicolaou, Sircar) dX t = rX t dt + f ( Y t ) X t dW t , √ √ dY t = [1 ε ( m − Y t ) − ν √ ε Λ( Y t )] dt + ν 2 2 √ ε d ˆ Z t , � where Λ( y ) = ρ µ − r 1 − ρ 2 , f ( y ) + γ ( y ) γ : market price of volatility risk. ⇓ P ε ( t, X t , Y t ) : Price of the European option : √ 2 f ( y ) 2 x 2 ∂ 2 P √ ε xf ( y ) ∂ 2 P ∂t + 1 2 ∂P ∂x 2 + ρν ∂x∂y + √ ν 2 ∂ 2 P ∂x − P )+[1 2 ∂y 2 + r ( x∂P ε ( m − y ) − ν √ ε Λ( y )] ∂P ∂y = 0 , ε P ( T, x, y ) = h ( y ) . 1 ε = α : Rate of mean reversion. What is the limit as α → ∞ ?, and the asymptotics ?

  7. (ii) Rescaled stochastic volatility model with jumps. dX ε t = rX ε t dt + f ( Y ε t , ξ ε t ) X ε t dW t , √ √ t = [1 2 2 t ) − ν t )] dt + ν dY ε ε ( m − Y ε √ ε Λ( Y ε t , ξ ε √ ε d ˆ Z t , ξ ε t = ξ t ε . ⇓ P ε ( t, X ε t , Y ε t , ξ ε t ) : Price of the European option 2 f ( y, ξ ) 2 x 2 ∂ 2 P ε ∂P ε ∂x 2 + r ( x∂P ε ∂t + 1 ∂x − P ε ) 2 ρνxf ( y, ξ ) ∂ 2 P ε 2Λ( y, ξ ) ∂P ε √ √ + 1 √ ε [ ∂x∂y − ∂y ] ε [ ν 2 ∂ 2 P ε ∂y 2 + ( m − y ) ∂P ε +1 ∂y + � P ε ( · , ξ + η ) − P ε ( · , ξ ) − � η, ∇ P ε � dq ( η )] = 0 ,

  8. P ( T, x, y ) = h ( y ) . 1 Change of variables : For dq ( η ) = | η | 1+ µ , y = z ξ = η √ ε, 1 µ ε Q ( t, x, z, η ) = P ( t, x, y, ξ ) ⇓ √ ε ) 2 x 2 ∂ 2 Q √ ε ) ∂ 2 Q √ ∂t + 1 ∂Q 2 f ( z 2 xf ( z ∂x 2 + ρν ∂x∂z + ν 2 ∂ 2 Q √ ∂x − Q )+[ 1 ∂z 2 + r ( x∂Q √ ε ( m − z 2Λ( z √ ε )] ∂Q √ ε − ν ∂z � Q ( · , η + η ′ ) − Q ( · , η ) − � η ′ , ∇ Q � dq ( η ′ ) = 0 . + ⇓ Q = Q 0 + √ εQ 1 + εQ 2 + ε 3 2 Q 3 + ... 1 2 3 + ε µ R 1 + ε µ R 2 + ε µ R 3 + ...

  9. (iii) Examples of 1D Levy processes L´ evy operator : � x ∈ R N . − R N [ u ( x + z ) − u ( x ) −� z, ∇ u ( x ) � ] q ( dz ) (1) Compound poisson process with one point L´ evy measure . q ( dz ) = cδ a ( dz ) , a ∈ R , where c > 0: frequency of the jump, a : the jump length. (2) Compound poisson process with discrete L´ evy measure. q ( dz ) = c Σ d j =1 p j δ a j ( dz ) where p j ≥ 0, Σ d j =1 p j = 1, c > 0: frequency of the jump, a i : jump lengths.

  10. (3) Compound poisson process with Gaussian distribution . 2 πv exp( −| z − m | 2 1 √ q ( dz ) = c ) dz 2 v where c > 0: frequency of the jump, jump dis- tribution is the normal distribution. (4) Variance gamma process ( σ 2 = 0, b , dq ( z )) q ( dz ) = c ( I z< 0 e − c 1 | z | + I z> 0 e − c 2 | z | ) 1 | z | dz, where c , c 1 , c 2 > 0 are constants. (5) Stable process ( σ 2 = 0, b , dq ( z )) 1 q ( dz ) = c 1 | z | 1+ α ( dz ) z < 0 , 1 = c 2 | z | 1+ α ( dz ) z > 0 where c 1 , c 2 ≥ 0 at least one c i � = 0, 0 < α < 2.

  11. (6) CGMY model ( σ 2 = 0, b , q ( dz )) q ( dz ) = c ( I z< 0 e − G | z | + I z> 0 e − M | z | ) | z | − (1+ Y ) dz where c > 0, G ≥ 0, M ≥ 0, Y < 2, such that the following are assumed: (1) Y < 0 = > G > 0 , M > 0 (2) Y = 0 = > VG process (3) G = M = 0 , 0 < Y < 2 = > symmetric stable process

  12. II. PIDE Analysis Purposes : • Determination of the ergodic jump process. • Homogenization technique to the asypm- totic analysis of α → ∞ (mean reverting rate). Methods : • Viscosity solutions. • Regularity of solutions. • Ergodoc (cell) problem. • Homogenizations.

  13. 1. Viscosity solutions (a) Let u ( x ) ∈ LSC (Ω). Sub-differential of u ( p, X ) ∈ J 2 , + at x ∈ Ω : u ( x ) s.t. ∀ δ > 0, Ω ∃ ε > 0, u ( x + z ) <u ( x )+ � p, z � + 1 2 � Xz, z � + δ | z | 2 ∀| z | <ε. (b) Let u ( x ) ∈ USC (Ω). Super-differential of ( p, X ) ∈ J 2 , − u at x ∈ Ω : u ( x ) s.t. ∀ δ > 0, Ω ∃ ε > 0, u ( x + z ) ≥ u ( x )+ � p, z � +1 2 � Xz, z � + δ | z | 2 ∀| z | <ε PDE problem F ( x, u, ∇ u, ∇ 2 u ) = 0 in Ω . ( ∗ ) • F ( x, u, ∇ u, ∇ 2 u ) = − Tr ( ∇ 2 u ) = − ∆ u. ∂ 2 u • F ( x, u, ∇ u, ∇ 2 u ) = sup α ∈A {− � N i,j =1 a ij ∂x i ∂x j − i =1 b i ∂u � N ∂x i − f ( x, α ) } .

  14. Definition. (i) u ( x ) ∈ LSC (Ω) is a viscosity subsolution of (*) iff ∀ ( p, X ) ∈ J 2 , + F ( x, u, p, X ) < 0 u ( x ) . Ω (ii) u ( x ) ∈ USC (Ω) is a viscosity supersolution of (*) iff ∀ ( p, X ) ∈ J 2 , − F ( x, u, p, X ) ≥ 0 u ( x ) . Ω Definition. (i) u ( x ) ∈ LSC (Ω) is a viscosity subsolution of (*) iff for any φ ∈ C 2 (Ω) s.t. u − φ takes a loc. max. at x 0 ∈ Ω and u ( x 0 ) = φ ( x 0 ), F ( x 0 , u ( x 0 ) , ∇ φ ( x 0 ) , ∇ 2 φ ( x 0 )) < 0 . (ii) u ( x ) ∈ USC (Ω) is a viscosity supersolution of (*) iff for any φ ∈ C 2 (Ω) s.t. u − φ takes a loc. min. at x 0 ∈ Ω and u ( x 0 ) = φ ( x 0 ), F ( x 0 , u ( x 0 ) , ∇ φ ( x 0 ) , ∇ 2 φ ( x 0 )) ≥ 0 . Remark Two definitions are equivalent.

  15. PIDE problem � F ( x, u, ∇ u, ∇ 2 u ) − R N [ u ( x + z ) − u ( x ) ( ∗∗ ) R N . −� z, ∇ u � ] dq ( z ) = 0 in Definition A. (i) u ( x ) ∈ LSC (Ω) : visc. sub- solution of (**) < = > ∀ x ∈ R N , ∀ ( p, X ) ∈ J 2 , + u ( x ), ∀ ( ε, δ ) (satisfying (a)): Ω 1 � F ( x, u ( x ) , p, X ) − 2 � ( X + 2 δI ) z, z � dq ( z ) | z | <ε � − | z | >ε [ u ( x + z ) − u ( x ) − � z, p � ] dq ( z ) < 0 (ii) u ( x ) ∈ USC (Ω) : visc. supersolution of (**) < = > ∀ x ∈ R N , ∀ ( p, X ) ∈ J 2 , − u ( x ), ∀ ( ε, δ ) Ω (satisfying (b)): 1 � F ( x, u ( x ) , p, X ) − 2 � ( X − 2 δI ) z, z � dq ( z ) | z | <ε � − | z | >ε [ u ( x + z ) − u ( x ) − � z, p � ] dq ( z ) ≥ 0

  16. Definition B. (i) u ( x ) ∈ LSC (Ω) : visc. subsolution of (**) < = > ∀ φ ∈ C 2 ( R N ), ∀ x ∈ R N s.t. global maximum of u − φ : � F ( x, u ( x ) , φ ( x ) , φ 2 ( x )) − R N [ φ ( x + z ) − φ ( x ) −� z, ∇ φ ( x ) � ] dq ( z ) < 0 . (ii) u ( x ) ∈ USC (Ω) : visc. supersolution of (**) < = > ∀ φ ∈ C 2 ( R N ), ∀ x ∈ R N s.t. global minimum of u − φ : � F ( x, u ( x ) , φ ( x ) , φ 2 ( x )) − R N [ φ ( x + z ) − φ ( x ) −� z, ∇ φ ( x ) � ] dq ( z ) ≥ 0 . Theorem. (M.A. (2008)) Definitions A and B are equivalent.

  17. Remark. Gneral comparison and existence re- sults are studied. For example, Dirichlet problem � F ( x, u, ∇ u, ∇ 2 u ) − R N [ u ( x + z ) − u ( x ) − −� z, ∇ u � ] dq ( z ) = 0 in Ω , x ∈ Ω c , u ( x ) = Ψ( x ) Neumann problem � F ( x, u, ∇ u, ∇ 2 u ) − x + z ∈ Ω [ u ( x + z ) − u ( x ) − −� z, ∇ u � ] dq ( z ) = 0 in Ω , �∇ u ( x ) , n ( x ) � = 0 x ∈ ∂ Ω , References. Problems in R N : O. Alvarez and A. Tourin; G. Barles, R. Buckdahn, E. Par- doux; E. Jacobsen and K. Karlsen, etc. Prob- lems in Ω : M. Arisawa; G. Barles and C. Im- bert, etc. Neumann problem : J. Menardi, and M. Garroni; M. Arisawa, etc.

  18. There are many open problems, for example the comparison of solutions of � F ( x, u, ∇ u, ∇ 2 u ) − R N [ u ( x + β ( x, z )) − u ( x ) − −� β ( x, z ) , ∇ u � ] q ( z ) dz = 0 in Ω , x ∈ Ω c , u ( x ) = Ψ( x ) where 1 q ( z ) = γ ∈ (1 , 2) , | z | N + γ which corresponds to the case of the jump size β ( x, z ) depends on x ∈ Ω.

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend