l evy measure density corresponding to inverse local time
play

L evy measure density corresponding to inverse local time Tomoko - PowerPoint PPT Presentation

L evy measure density corresponding to inverse local time Tomoko Takemura and Matsuyo Tomisaki 2012. 9.27 motivation We are concerned with L evy measure density corresponding to the inverse local time at the regular end point for


  1. L´ evy measure density corresponding to inverse local time Tomoko Takemura and Matsuyo Tomisaki 2012. 9.27

  2. motivation We are concerned with L´ evy measure density corresponding to the inverse local time at the regular end point for harmonic transform of a one dimensional diffusion process. We show that the L´ evy measure density is represented as a Laplace transform of the spectral measure corresponding to an original diffusion process, where the absorbing boundary condition is posed at the end point if it is regular. h transform Itˆ o and McKean D ∗ ← → ← → D s , m , k D s h , m h , 0 s h , m h , 0 absorbing absorbing reflecting n ∗ ( ξ )

  3. Tabel contents 1. One dimensional diffusion process 2. Harmonic transform 3. L´ evy measure density 4. Main theorem 5. Examples

  4. One dimensional diffusion process ◮ We set s : continuous increasing fnc. on I = ( l 1 , l 2 ), −∞ ≤ l 1 < l 2 ≤ ∞ m : right continuous increasing fnc. on I k : right continuous nondecreasing fnc. on I

  5. One dimensional diffusion process ◮ We set s : continuous increasing fnc. on I = ( l 1 , l 2 ), −∞ ≤ l 1 < l 2 ≤ ∞ m : right continuous increasing fnc. on I k : right continuous nondecreasing fnc. on I ◮ G s , m , k : 1-dim diffusion operator with s , m , and k G s , m , k u = dD s u − udk dm

  6. One dimensional diffusion process ◮ We set s : continuous increasing fnc. on I = ( l 1 , l 2 ), −∞ ≤ l 1 < l 2 ≤ ∞ m : right continuous increasing fnc. on I k : right continuous nondecreasing fnc. on I ◮ G s , m , k : 1-dim diffusion operator with s , m , and k G s , m , k u = dD s u − udk dm ◮ D s , m , k : 1-dim diffusion process with G s , m , k [ l 1 is absorbing if l 1 is regular ]

  7. One dimensional diffusion process ◮ p ( t , x , y ) : transition probability w.r.t. dm for D s , m , k If l 1 is ( s , m , k )-regular, � e − λ t ψ o ( x , λ ) ψ o ( y , λ ) d σ ( λ ) , p ( t , x , y ) = t > 0 , x , y ∈ I , [0 , ∞ ) (1) where d σ ( λ ) is a Borel measure on [0 , ∞ ) satisfying � e − λ t d σ ( λ ) < ∞ , t > 0 , (2) [0 , ∞ ) and ψ o ( x , λ ), x ∈ I , λ ≥ 0, is the solution of the following integral equation ψ o ( x , λ ) = s ( x ) − s ( l 1 ) � + { s ( x ) − s ( y ) } ψ o ( y , λ ) {− λ dm ( y ) + dk ( y ) } ( l 1 , x ]

  8. One dimensional diffusion process Proposition 2.1 Assume that l 1 is ( s , m , k ) -entrance and � { s ( c o ) − s ( x ) } 2 dm ( x ) < ∞ . (3) ( l 1 , c o ] Then p ( t , x , y ) is represented as (1) with d σ ( λ ) satisfying (2) and ψ o ( x , λ ) is the solution of the integral equation � ψ o ( x , λ ) = 1 + { s ( x ) − s ( y ) } ψ o ( y , λ ) {− λ dm ( y ) + dk ( y ) } . ( l 1 , x ]

  9. Harmonic transform ◮ We set H s , m , k ,β = { h > 0; G s , m , k h = β h } , for β ≥ 0 For h ∈ H s , m , k ,β , ds h ( x ) = h ( x ) − 2 ds ( x ) , dm h ( x ) = h ( x ) 2 dm ( x )

  10. Harmonic transform ◮ We set H s , m , k ,β = { h > 0; G s , m , k h = β h } , for β ≥ 0 For h ∈ H s , m , k ,β , ds h ( x ) = h ( x ) − 2 ds ( x ) , dm h ( x ) = h ( x ) 2 dm ( x ) ◮ We obtain � p h ( t , x , y ) = e − β t p ( t , x , y ) � G s h , m h , 0 : h transform of G s , m , k h ( x ) h ( y )

  11. Harmonic transform ◮ We set H s , m , k ,β = { h > 0; G s , m , k h = β h } , for β ≥ 0 For h ∈ H s , m , k ,β , ds h ( x ) = h ( x ) − 2 ds ( x ) , dm h ( x ) = h ( x ) 2 dm ( x ) ◮ We obtain � p h ( t , x , y ) = e − β t p ( t , x , y ) � G s h , m h , 0 : h transform of G s , m , k h ( x ) h ( y ) ◮ D s h , m h , 0 : 1-dim diffusion process with G s h , m h , 0 [ l 1 is absorbing if l 1 is regular ]

  12. Harmonic transform ◮ D ∗ s h , m h , 0 : 1-dim diffusion process with G s h , m h , 0 [ l 1 is regular and reflecting boundary ]

  13. Harmonic transform ◮ D ∗ s h , m h , 0 : 1-dim diffusion process with G s h , m h , 0 [ l 1 is regular and reflecting boundary ] ◮ l ( h ∗ ) ( t , ξ ) : local time for D ∗ s h , m h , 0 , that is, � t � l ( h ∗ ) ( t , ξ ) dm h ( ξ ) , f ( X ( u )) du = t > 0 , 0 I for bounded continuous functions f on I .

  14. Harmonic transform ◮ D ∗ s h , m h , 0 : 1-dim diffusion process with G s h , m h , 0 [ l 1 is regular and reflecting boundary ] ◮ l ( h ∗ ) ( t , ξ ) : local time for D ∗ s h , m h , 0 , that is, � t � l ( h ∗ ) ( t , ξ ) dm h ( ξ ) , f ( X ( u )) du = t > 0 , 0 I for bounded continuous functions f on I . ◮ τ ( h ∗ ) ( t ) : inverse local time l ( h ∗ ) − 1 ( t , l 1 ) at the end point l 1

  15. L´ evy measure density Proposition 2.2 (Itˆ o and McKean) Assume the following conditions. l 1 is ( s , m , 0) -regular and reflecting, s ( l 2 ) = ∞ . Then [ τ ∗ ( t ) , t ≥ 0] is a L´ evy process and there is a L´ evy measure density n ∗ ( ξ ) such that � ∞ � � � e − λτ ∗ ( t ) � E ∗ (1 − e − λξ ) n ∗ ( ξ ) d ξ = exp − t l 1 0 where E ∗ l 1 stands for the expectation with respect to P ∗ l 1 , � n ∗ ( ξ ) = e − λξ d σ ( λ ) , x , y → l 1 D s ( x ) D s ( y ) p ( ξ, x , y ) = lim [0 , ∞ ) where p ( t , x , y ) is the transition probability density for D s , m , 0 , and d σ ( λ ) is the Borel measure appeared in (1) satisfying (2).

  16. Main theorem Now we give a representation of n ( h ∗ ) ( ξ ) by means of items corresponding to the diffusion process D s , m , k . l 1 is ( s h , m h , 0)-regular if and only if one of the following conditions is satisfied. l 1 is ( s , m , k )-regular and h ( l 1 ) ∈ (0 , ∞ ). (4) l 1 is ( s , m , k )-entrance, h ( l 1 ) = ∞ , and | m h ( l 1 ) | < ∞ . (5) l 1 is ( s , m , k )-natural, h ( l 1 ) = ∞ , and | m h ( l 1 ) | < ∞ . (6)

  17. Main theorem Theorem 2.3 Let h ∈ H s , m , k ,β . Assume one of (4), (5), and (6). Further assume that l 1 is reflecting and s h ( l 2 ) = ∞ . Then there exists L´ evy measure density n ( h ∗ ) ( ξ ) . In particular, if (4) is satisfied, then � e − ξλ d σ ( λ ) n ( h ∗ ) ( ξ ) = h ( l 1 ) 2 e − βξ [0 , ∞ ) = h ( l 1 ) 2 e − βξ lim x , y → l 1 D s ( x ) D s ( y ) p ( ξ, x , y ) . If (5) is satisfied, then � e − ξλ d σ ( λ ) n ( h ∗ ) ( ξ ) = D s h ( l 1 ) 2 e − βξ [0 , ∞ ) = D s h ( l 1 ) 2 e − βξ lim x , y → l 1 p ( ξ, x , y ) .

  18. Examples Example 2.4 (Bessel process) Let us consider the following diffusion operator G ( ν ) on I = (0 , ∞ ) . d 2 G ( ν ) = 1 dx 2 + 2 ν + 1 d dx , 2 2 x where −∞ < ν < ∞ . ds ( ν ) ( x ) = x − 2 ν − 1 dx , dm ( ν ) ( x ) = 2 x 2 ν +1 dx . The killing measure is null. The state of the end point 0 depends on ν , that is, it is ( s ( ν ) , m ( ν ) , 0) -entrance if ν ≥ 0 , it is ( s ( ν ) , m ( ν ) , 0) -regular if − 1 < ν < 0 , it is ( s ( ν ) , m ( ν ) , 0) -exit if ν ≤ − 1 .

  19. Examples Further � 1 { s ( ν ) (1) − s ( ν ) ( x ) } 2 dm ( ν ) ( x ) < ∞ ⇐ ⇒ | ν | < 1 . 0 The end point ∞ is ( s ( ν ) , m ( ν ) , 0)-natural for all ν , and in particular, s ( ν ) ( ∞ ) = ∞ ⇐ ⇒ ν ≤ 0 . Let D ( ν ) : the diffusion process on I with G ( ν ) ( 0 being absorbing if − 1 < ν < 0) p ( ν ) ( t , x , y ) :the transition probability density w.r.t. dm ( ν ) .

  20. Examples (1) − 1 < ν < 0 [ 0 : ( s ( ν ) , m ( ν ) , 0)-regular ] D ( ν, ∗ ) : the diffusion process on I with G ( ν ) ( 0 being reflecting) n ( ν, ∗ ) :the L´ evy measure density corresponding to the inverse local time at 0 for D ( ν, ∗ ) Since s ( ν ) ( ∞ ) = ∞ , n ( ν, ∗ ) ( ξ ) = lim x , y → 0 D s ( ν ) ( x ) D s ( ν ) ( y ) p ( ν ) ( ξ, x , y ) � ∞ | ν | e − ξλ σ ( ν ) ( λ ) d λ = 2 −| ν | +1 Γ( | ν | ) ξ − ( | ν | +1) . = 0

  21. Examples (2) − 1 < ν < 1. [ 0 : ( s ( ν ) , m ( ν ) , 0)-regular or -entrance, and (3) is satisfied ] For β > 0, we put � | ν | � β 2 x − ν K | ν | ( � h ( x ) = 2 β x ) 2 Then h ( x ) ∈ H s ( ν ) , m ( ν ) , 0 ,β and � √ 2 β x � � d 2 2 β K ′ � = 1 1 d G ( ν ) ν � dx 2 + 2 x + � √ 2 β x dx , h � 2 K ν ds ( ν,β ) ( x ) = h ( x ) − 2 ds ( ν ) ( x ) , dm ( ν,β ) ( x ) = h ( x ) 2 dm ( ν ) ( x ) .

  22. Examples The end point 0 is ( s ( ν,β ) , m ( ν,β ) , 0)-regular. We consider the diffusion process D ( ν, ∗ ) with G ( ν ) as the generator and with the end h h point 0 being reflecting. Let n ( ν, ∗ ) be the L´ evy measure density h corresponding to the inverse local time at 0 for D ( ν, ∗ ) . h n ( ν, ∗ ) = 2 −| ν |− 1 Γ( | ν | + 1) ξ − ( | ν | +1) e − βξ . h (3) 0 < ν < 1 We put h (0) ( x ) = { s ( ν ) ( ∞ ) − s ( ν ) ( x ) } / { s ( ν ) ( ∞ ) − s ( ν ) (1) } = x − 2 ν . Denote by G ( ν, 0) the harmonic transform of G ( ν ) based on h h (0) ∈ H s ( ν ) , m ( ν ) , 0 , 0 , that is, d 2 = 1 dx 2 + − 2 ν + 1 d G ( ν, 0) dx . h 2 2 x

  23. Examples ds ( ν, 0) ( x ) = h (0) ( x ) − 2 ds ( ν ) ( x ) = x 2 ν − 1 dx , dm ( ν, 0) ( x ) = h (0) ( x ) 2 dm ( ν ) ( x ) = 2 x − 2 ν +1 dx . The end point 0 is ( s ( ν, 0) , m ( ν, 0) , 0)-regular. We consider the diffusion process D ( ν, 0 , ∗ ) with G ( ν, 0) as the generator and with the h h end point 0 being reflecting. Let n ( ν, 0 , ∗ ) be the L´ evy measure h density corresponding to the inverse local time at 0 for D ( ν, 0 , ∗ ) . h ν n ( ν, 0 , ∗ ) = 2 − ν +1 Γ( ν ) ξ − ν − 1 . h

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend