slow fast dynamics and periodic behaviors for mean field
play

Slow/fast dynamics and periodic behaviors for mean-field excitable - PowerPoint PPT Presentation

Slow/fast dynamics and periodic behaviors for mean-field excitable systems Christophe Poquet Universit e Lyon 1 April 4 th , 2019 Workshop : Mean-field approaches to the dynamics of neuronal networks, EITN, Paris In collaboration with E.


  1. Slow/fast dynamics and periodic behaviors for mean-field excitable systems Christophe Poquet Universit´ e Lyon 1 April 4 th , 2019 Workshop : Mean-field approaches to the dynamics of neuronal networks, EITN, Paris In collaboration with E. Lu¸ con (Universit´ e Paris Descartes) 1/18

  2. Noisy excitable systems in interaction An excitable system : • possesses a stable rest position . • threshold phenomenon : after a sufficiently large perturbation, follows a complex trajectory before coming back to the rest state. 2/18

  3. Noisy excitable systems in interaction An excitable system : • possesses a stable rest position . • threshold phenomenon : after a sufficiently large perturbation, follows a complex trajectory before coming back to the rest state. General observation : A large population of noisy excitable systems in mean field interaction may possess a synchronized periodic behavior . 2/18

  4. Noisy excitable systems in interaction An excitable system : • possesses a stable rest position . • threshold phenomenon : after a sufficiently large perturbation, follows a complex trajectory before coming back to the rest state. General observation : A large population of noisy excitable systems in mean field interaction may possess a synchronized periodic behavior . Aim Rigorous proof of periodic behavior for noisy neurons in mean field interaction ? 2/18

  5. Active rotators [Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R / (2 π Z ) with dynamics � N dϕ i,t = − δV ′ ( ϕ i,t ) dt − K sin( ϕ i,t − ϕ j,t ) dt + dB i,t . N j =1 3/18

  6. Active rotators [Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R / (2 π Z ) with dynamics � N dϕ i,t = − δV ′ ( ϕ i,t ) dt − K sin( ϕ i,t − ϕ j,t ) dt + dB i,t . N j =1 Example of potential : V ( θ ) = θ − a cos( θ ) , V ′ ( θ ) = 1 + a sin( θ ) . a<1 a>1 4 4 2 2 0 0 −2 −2 −4 −4 −6 −6 −6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6 3/18

  7. Active rotators [Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R / (2 π Z ) with dynamics � N dϕ i,t = − δV ′ ( ϕ i,t ) dt − K sin( ϕ i,t − ϕ j,t ) dt + dB i,t . N j =1 Example of potential : V ( θ ) = θ − a cos( θ ) , V ′ ( θ ) = 1 + a sin( θ ) . a<1 a>1 4 4 2 2 0 0 −2 −2 −4 −4 −6 −6 −6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6 � N 1 On any time interval [0 , T ] , the empirical measure µ N,t = i =1 δ ϕ i,t converges N weakly to the solution of � � � ∂ t µ t = 1 2 ∂ 2 + δ∂ θ ( µ t V ′ ) . sin( θ − ψ ) dµ t ( ψ ) θ µ t + K∂ θ µ t S 3/18

  8. Active rotators [Shinimoto, Kuramoto, 1986] Consider a population of N oscillators in S = R / (2 π Z ) with dynamics � N dϕ i,t = − δV ′ ( ϕ i,t ) dt − K sin( ϕ i,t − ϕ j,t ) dt + dB i,t . N j =1 Example of potential : V ( θ ) = θ − a cos( θ ) , V ′ ( θ ) = 1 + a sin( θ ) . a<1 a>1 4 4 2 2 0 0 −2 −2 −4 −4 −6 −6 −6 −4 −2 0 2 4 6 −6 −4 −2 0 2 4 6 � N 1 On any time interval [0 , T ] , the empirical measure µ N,t = i =1 δ ϕ i,t converges N weakly to the solution of � � � ∂ t µ t = 1 2 ∂ 2 + δ∂ θ ( µ t V ′ ) . sin( θ − ψ ) dµ t ( ψ ) θ µ t + K∂ θ µ t S For accurate choices of parameters ( a may be larger than one) and δ small enough, this non-linear Fokker Planck PDE admits a limit cycle . [Giacomin, Pakdaman, Pellegrin and P., 2012] 3/18

  9. Simulation : N = 4000 , K = 2 , a = 1 . 1 , δ = 0 . 5 4/18

  10. Active rotators For δ = 0 we have � � � ∂ t µ t ( θ ) = 1 2 ∂ 2 θ p t ( θ ) + K∂ θ µ t sin( θ − ψ ) dµ t ( ψ ) , S and if K > 1 , the model admits moreover a stable curve of synchronized stationary solutions M 0 = { q ψ ( · ) : ψ ∈ S} , where q ψ ( · ) = q 0 ( · − ψ ) . 0.20 0.15 0.10 0.05 1 2 3 4 5 6 5/18

  11. Active rotators For δ = 0 we have � � � ∂ t µ t ( θ ) = 1 2 ∂ 2 θ p t ( θ ) + K∂ θ µ t sin( θ − ψ ) dµ t ( ψ ) , S and if K > 1 , the model admits moreover a stable curve of synchronized stationary solutions M 0 = { q ψ ( · ) : ψ ∈ S} , where q ψ ( · ) = q 0 ( · − ψ ) . 0.20 0.15 0.10 0.05 1 2 3 4 5 6 For δ small the model admits an invariant curve M δ = { q δ ψ : ψ ∈ S} , perturbation of M 0 , with phase dynamics � � a ψ δ ˙ sin( ψ δ t ≈ δ 1 + t ) . a K 5/18

  12. The model Consider a population of N interacting units in R d with dynamics   N � √  X i,t − 1  dt + dX i,t = δF ( X i,t ) dt − K X j,t 2 σdB i,t , N j =1 6/18

  13. The model Consider a population of N interacting units in R d with dynamics   N � √  X i,t − 1  dt + dX i,t = δF ( X i,t ) dt − K X j,t 2 σdB i,t , N j =1 where     k 1 0 σ 1 0     ... ... • δ � 0 , K =  > 0 , σ =  > 0 ,   0 k d 0 σ d 6/18

  14. The model Consider a population of N interacting units in R d with dynamics   N � √  X i,t − 1  dt + dX i,t = δF ( X i,t ) dt − K X j,t 2 σdB i,t , N j =1 where     k 1 0 σ 1 0     ... ... • δ � 0 , K =  > 0 , σ =  > 0 ,   0 k d 0 σ d • ( B i ) i =1 ...N family of standard independent Brownian motions, 6/18

  15. The model Consider a population of N interacting units in R d with dynamics   N � √  X i,t − 1  dt + dX i,t = δF ( X i,t ) dt − K X j,t 2 σdB i,t , N j =1 where     k 1 0 σ 1 0     ... ... • δ � 0 , K =  > 0 , σ =  > 0 ,   0 k d 0 σ d • ( B i ) i =1 ...N family of standard independent Brownian motions, • F smooth, and • ( F ( x ) − F ( y )) · ( x − y ) � C | x − y | 2 , • F ( x ) · Kσ − 2 x � C 1 {| x | � r } − c | x | 2 . • | F ( x ) | � Ce ε | x | 2 , | ∂ xk F ( x ) | � Ce ε | x | 2 , | ∂xk F ( x ) | • lim | x |→ 0 F ( x ) · Kσ − 2 = 0 , | ∂ xk,xl F ( x ) | � Ce ε | x | 2 , 6/18

  16. The model Consider a population of N interacting units in R d with dynamics   N � √  X i,t − 1  dt + dX i,t = δF ( X i,t ) dt − K X j,t 2 σdB i,t , N j =1 where     k 1 0 σ 1 0     ... ... • δ � 0 , K =  > 0 , σ =  > 0 ,   0 k d 0 σ d • ( B i ) i =1 ...N family of standard independent Brownian motions, • F smooth, and • ( F ( x ) − F ( y )) · ( x − y ) � C | x − y | 2 , • F ( x ) · Kσ − 2 x � C 1 {| x | � r } − c | x | 2 . • | F ( x ) | � Ce ε | x | 2 , | ∂ xk F ( x ) | � Ce ε | x | 2 , | ∂xk F ( x ) | • lim | x |→ 0 F ( x ) · Kσ − 2 = 0 , | ∂ xk,xl F ( x ) | � Ce ε | x | 2 , [Baladron, Fasoli, Faugeras, Touboul, 2012], [Lu¸ con, Stannat, 2014], [Bossy, Faugeras, Talay, 2015], [Mehri, Scheutzow, Stannat, � N 1 Zangeneh, 2018]] : On any time interval [0 , T ] , the empirical measure µ N,t = i =1 δ X i,t N converges weakly to the solution of � � � ∂ t µ t = ∇ · ( σ 2 ∇ µ t ) + ∇ · µ t K ( x − − δ ∇ · ( µ t F ) . R d zdµ t ( z ) 6/18

  17. The model Consider a population of N interacting units in R d with dynamics   N � √  X i,t − 1  dt + dX i,t = δF ( X i,t ) dt − K X j,t 2 σdB i,t , N j =1 where     k 1 0 σ 1 0     ... ... • δ � 0 , K =  > 0 , σ =  > 0 ,   0 k d 0 σ d • ( B i ) i =1 ...N family of standard independent Brownian motions, • F smooth, and • ( F ( x ) − F ( y )) · ( x − y ) � C | x − y | 2 , • F ( x ) · Kσ − 2 x � C 1 {| x | � r } − c | x | 2 . • | F ( x ) | � Ce ε | x | 2 , | ∂ xk F ( x ) | � Ce ε | x | 2 , | ∂xk F ( x ) | • lim | x |→ 0 F ( x ) · Kσ − 2 = 0 , | ∂ xk,xl F ( x ) | � Ce ε | x | 2 , [Baladron, Fasoli, Faugeras, Touboul, 2012], [Lu¸ con, Stannat, 2014], [Bossy, Faugeras, Talay, 2015], [Mehri, Scheutzow, Stannat, � N 1 Zangeneh, 2018]] : On any time interval [0 , T ] , the empirical measure µ N,t = i =1 δ X i,t N converges weakly to the solution of � � � ∂ t µ t = ∇ · ( σ 2 ∇ µ t ) + ∇ · µ t K ( x − − δ ∇ · ( µ t F ) . R d zdµ t ( z ) µ t is the distribution of √ dX t = δF ( X t ) dt − K ( X t − E [ X t ]) dt + 2 σdB t . 6/18

  18. A toy example � � x 2 − a Consider F ( x, y ) = with a ∈ R , b > 0 . − by p a p a 0 0 a > 0 a < 0 7/18

  19. FitzHugh Nagumo Consider � � v − v 3 3 − w F ( v, w ) = , 1 c ( v + a − bw ) where a ∈ R , b, c > 0 . 8/18

Download Presentation
Download Policy: The content available on the website is offered to you 'AS IS' for your personal information and use only. It cannot be commercialized, licensed, or distributed on other websites without prior consent from the author. To download a presentation, simply click this link. If you encounter any difficulties during the download process, it's possible that the publisher has removed the file from their server.

Recommend


More recommend